Skip to main content
Log in

A relationship between electrical conductivity and photodegradation in styrene-butadiene copolymer/multi-wall carbon nanotube composite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

An effect of photodegradation on electrical conductivity of a styrene-butadiene copolymer (SBR)/multiwall carbon nanotube (MWNT) composite was studied with a TiO2/polyethylene oxide/methyl linoleate paint photocatalyst under UV and/or visible light irradiation. An oxidative etching of impurities on the MWNT surface was caused by the UV or visible light irradiation, leading to an increase of quality of MWNT. On the other hand, the photocatalyst addition caused the degradation of MWNT structure. A relationship between the electrical conductivity and MWNT content showed that the MWNT dispersity in a SBR was superior to that in a polystyrene (PS). In addition, the PS addition to SBR matrix caused MWNT aggregation. The electrical conductivity decrease of the MWNT composite was due to electrical percolation structure loss caused by the photocatalyst under the visible light irradiation, and its rate depended on the MWNT dispersity. The PS molecular weight change behavior with the photocatalyst was consistent with the electrical conductivity one of the SBR/MWNT. The photocatalyst ability was estimated from the electrical conductivity of the SBR/MWNT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Grimes CA, Dickey EC, Mungle C, Ong KG, Qian D (2001) Effect of purification of the electrical conductivity and complex permittivity of multiwall carbon nanotubes. J Appl Phys 90:4134–4137. doi:10.1063/1.1400100

    Article  CAS  Google Scholar 

  2. Lourie O, Cox DM, Wagne HD (1998) Buckling and collapse of embedded carbon nanotubes. Phys Rev Lett 81:1638–1641. doi:10.1103/PhysRevLett.81.1638

    Article  CAS  Google Scholar 

  3. Yu M-F, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84:5552–5555. doi:10.1103/PhysRevLett.84.5552

    Article  CAS  Google Scholar 

  4. Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616. doi:10.1103/PhysRevLett.84.4613

    Article  CAS  Google Scholar 

  5. Pötschke P, Bhattacharyya AR, Janke A, Goering H (2003) Melt mixing of polycarbonate/multi-wall carbon nanotube composites. Compos Interfaces 10:389–404. doi:10.1163/156855403771953650

    Article  Google Scholar 

  6. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899. doi:10.1016/S0032-3861(03)00539-1

    Article  CAS  Google Scholar 

  7. McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brenna GP, Bein D, Lemoine P, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232. doi:10.1016/j.polymer.2005.06.094

    Article  CAS  Google Scholar 

  8. Gorrasi G, Sarno M, Bartolomeo AD, Sannino D, Ciambelli P, Vittoria V (2007) Incorporation of carbon nanotubes into polyethylene by high energy ball milling: morphology and physical properties. J Polym Sci Part B Polym Phys 45:597–606. doi:10.1002/polb.21070

    Article  CAS  Google Scholar 

  9. Valentino O, Sarno M, Rainone NG, Nobile MR, Ciambelli P, Neitzert HC, Simon GP (2008) Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys E 40:2440–2445. doi:10.1016/j.physe.2008.02.001

    Article  CAS  Google Scholar 

  10. Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos KM, Jannakoudakis A, Docoslis A (2008) Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab 93:952–967. doi:10.1016/j.polymdegradstab.2008.01.033

    Article  CAS  Google Scholar 

  11. Ganß M, Satapathy BK, Thunga M, Weidisch R, Pötschke P, Jehnichen D (2008) Structural interpretations of deformation and fracture behavior of polypropylene/multi-walled carbon nanotube composites. Acta Mater 56:2247–2261. doi:10.1016/j.actamat.2008.01.010

    Article  Google Scholar 

  12. Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM (2003) Carbon nanotubes as polymer antioxidants. J Mater Chem 13:491–495. doi:10.1039/B211328G

    Article  CAS  Google Scholar 

  13. Morlat-Therias S, Fanton E, Gardette J-L, Alexandre SPM, Dubois P (2007) Polymer/carbon nanotube nanocomposites: influence of carbon nanotubes on EVA photodegradation. Polym Degrad Stab 92:1873–1882. doi:10.1016/j.polymdegradstab.2007.06.021

    Article  CAS  Google Scholar 

  14. Dintcheva NT, Malatesta FPL, Malatesta V (2009) Photo-oxidation behaviour of polyethylene/multi-wall carbon nanotube composite films. Polym Degrad Stab 94:162–170. doi:10.1016/j.polymdegradstab.2008.11.012

    Article  CAS  Google Scholar 

  15. Nakatani H, Miyazaki K (2013) Polystyrene photodegradation with a novel titanium dioxide/poly(ethylene oxide)/methyl linoleate paint photocatalyst system. J Appl Polym Sci 129:3490–3496. doi:10.1002/app.39101

    Article  CAS  Google Scholar 

  16. Shang J, Chai M, Zhu Y (2003) Photocatalytic degradation of polystyrene plastic under fluorescent light. Environ Sci Technol 37:4494–4499. doi:10.1021/es0209464

    Article  CAS  Google Scholar 

  17. Li Y, Zhao L, Shimizu H (2011) Electrically conductive polymeric materials with high stretchability and excellent elasticity by a surface coating method. Macromol Rapid Commun 32:289–294. doi:10.1002/marc.201000470

    Article  CAS  Google Scholar 

  18. Lee CO, Najafi E, Kim JY, Han S-H, Lee T, Shin K (2008) Effects of protons, electrons, and UV radiation on carbon nanotubes. ACS Symp Ser 978:232–252. doi:10.1021/bk-2007-0978.ch020

    Article  CAS  Google Scholar 

  19. Hamadate M, Sato R, Miyazaki K, Okazaki N, Nakatani H (2014) Effect of polymer chain scission on photodegradation behavior of polystyrene/multi-wall carbon nanotube composite. J Appl Polym Sci 131:5778–5784. doi:10.1002/app.40362

    Article  Google Scholar 

  20. Nakatani H, Motokucho S, Miyazaki K (2015) Difference in polystyrene oxo-biodegradation behavior between copper phthalocyanine modified TiO2 and ZnO paint photocatalyst systems. Polym Degrad Stab 120:1–9. doi:10.1016/j.polymdegradstab.2015.06.002

    Article  CAS  Google Scholar 

  21. Benoit JM, Corraze B, Lefrant S, Blau WJ, Bernier P, Chauvet O (2001) Transport properties of PMMA-carbon nanotubes composites. Synth Met 121:1215–1216. doi:10.1016/S0379-6779(00)00838-9

    Article  CAS  Google Scholar 

  22. Tchoul MN, Ford WT, Ha MLP, Chavez-Sumarriva I, Grady BP, Lolli G, Resasco DE, Arepalli S (2008) Composites of single-walled carbon nanotubes and polystyrene: preparation and electrical conductivity. Chem Mater 20:3120–3126. doi:10.1021/cm703625w

    Article  CAS  Google Scholar 

  23. Dillon AC, Gennett T, Jones KM, Alleman JL, Parilla PA, Heben MJ (1999) A simple and complete purification of single-walled carbon nanotube materials. Adv Mater 11:1354–1358. doi:10.1002/(SICI)1521-4095(199911)11:16<1354:AID-ADMA1354>3.0.CO;2-N

    Article  CAS  Google Scholar 

  24. Chigumbu N, Iyuke S, Pillay V, Ndlovu S (2012) In vitro evaluation of the physicochemical effects of drug loaded carbon nanotubes on toxicity. J Nanomed Nanotechol 3:135. doi:10.4172/2157-7439.1000135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant-in-Aid for Scientific Research, No. 25740040 from Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisayuki Nakatani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakatani, H., Hirooka, M., Yamaguchi, K. et al. A relationship between electrical conductivity and photodegradation in styrene-butadiene copolymer/multi-wall carbon nanotube composite. Polym. Bull. 74, 1193–1206 (2017). https://doi.org/10.1007/s00289-016-1771-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1771-7

Keywords

Navigation