Skip to main content
Log in

Copper (II) adsorption capacity of a novel hydroxytyrosol-based polyacrylate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel hydroxytyrosol-based polyacrylate polymer material (pAcHTy) endowed with metal ion adsorption ability was obtained by free radical polymerization of a monomer containing a hydroxytyrosol precursor (tyrosol). Hydroxytyrosol (HTy) is the main natural polyphenolic compound with antioxidant activity occurring in virgin olive oil and in olive oil wastewaters. pAcHTy showed a good chelating activity with respect to Cu2+ ions, especially at pH 6 where short equilibrium times and high adsorption capacity were observed (146 mg/g). From thermodynamic parameters, it has been found that the sorption process was spontaneous at low temperature and exothermic in nature. The adsorption process has been studied by employing three simplified kinetic models, including a pseudo-first-order equation, pseudo-second-order equation, and intraparticle diffusion equation. Kinetic parameters, rate constants, equilibrium sorption capacities, and related correlation coefficients, for each kinetic model, were calculated and discussed. It was shown that the adsorption of Cu2+ ions could be described by the pseudo-second-order equation, suggesting that the adsorption process is presumable a chemisorption. The pAcHTy polymer could find an important application in the medical field, particularly in chelation therapy as well as in the wastewater and drinking water treatment plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andjelkovic M, Van Camp J, De Meulenaer B, Depamelaere G, Socaciu C, Verloo M, Verhe R (2006) Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem 98:23–31. doi:10.1016/j.foodchem.2005.05.044

    Article  CAS  Google Scholar 

  2. Brown JE, Khodr H, Hider RC, Rice-Evans J (1998) Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. Biochem J 330:1173–1178. doi:10.1042/bj3301173

    Article  CAS  Google Scholar 

  3. Bernard J, Branger C, Beurroises I, Denoyel R, Margaillan A (2008) Synthesis and characterization of a polystyrenic resin functionalized by catechol: application to retention of metal ions. React Funct Polym 68:1362–1370. doi:10.1016/j.reactfunctpolym.2008.06.014

    Article  CAS  Google Scholar 

  4. Hamada YZ, Cassietta RJ (2007) Interaction of l-3,4-dihydroxyphenylalanin (l-DOPA) as a coordinating ligand with a series of metal ions; reaction of l-DOPA. J Coord Chem 60:2149–2163. doi:10.1080/00958970701256634

    Article  CAS  Google Scholar 

  5. Kehrer JP, Robertson JD, Smith CV (2010) Chapter 14. In: Bond J (ed) Comprehensive toxicology, vol 1, 2nd edn. Elsevier Ltd, Amsterdam, p 277

    Chapter  Google Scholar 

  6. Halliwell B, Aruoma OI (1993) DNA and free radicals, 1st edn. Ellis Horwood, New York, p 1

    Google Scholar 

  7. Lee HB, Yu MR, Yang Y, Jiang Z, Ha H (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14:241–245. doi:10.1097/01.ASN.0000077410.66390.0F

    Article  Google Scholar 

  8. Taresco V, Crisante F, Francolini I, Martinelli A, D’Ilario L, Donelli G, Ricci-Vitiani L, Buccarelli M, Pietrelli L, Piozzi A (2015) Antimicrobial and antioxidant amphiphilic random copolymers to address medical device-centered infections. Acta Biomater 22:131–140. doi:10.1016/j.actbio.2015.04.023

    Article  CAS  Google Scholar 

  9. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  10. Pan Q, Kleer CG, van Golen KL, Irani J, Bottema KM, Bias C (2002) Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res 62:4854–4859

    CAS  Google Scholar 

  11. Frigerio M, Santagostino M, Sputore SA (1999) User-friendly entry to 2-iodoxybenzoic acid (IBX). J Org Chem 64:4537–4538. doi:10.1021/jo9824596

    Article  CAS  Google Scholar 

  12. Barontini M, Bernini R, Crisante F, Mincione E (2008) Italy Patent WO2008110908 A8, 31 Dec 2008

  13. Yu ME, Hwang JY, Deming TJ (1999) Role of L-3,4-dihydroxyphenylalanine in mussel adhesive proteins. J Am Chem Soc 121:5825–5826. doi:10.1021/ja990469y

    Article  CAS  Google Scholar 

  14. McKay G (1982) Adsorption of dyestuffs from aqueous solutions with activated carbon. I. Equilibrium and batch contact-tome studies. J Chem Tech Biotech 32:759–772. doi:10.1002/jctb.5030320712

    Article  CAS  Google Scholar 

  15. Nakajima A, Sakai N, Yamauchi S (2006) Mechanism of copper (II) adsorption by polyvinyl polyacrylate. J App Polym Sci 102:5372–5377. doi:10.1002/app.24940

    Article  CAS  Google Scholar 

  16. Chen CY, Chen SY (2004) Adsorption properties of a chelating resin containing hydroxy group and iminodiacetic acid for copper ions. J Appl Polym Sci 94:2123–2130. doi:10.1002/app.21079

    Article  CAS  Google Scholar 

  17. Li D, Wang X, Wan D, Duan S, Liu C, Zhang K, Fang B (2011) Adsorption of Cu2+ cations from aqueous solution by S-doped TiO2. Sep Sci Tech 46:2539–2548. doi:10.1080/01496395.2011.598492

    Article  CAS  Google Scholar 

  18. Liu M, Deng Y, Zhan H, Zhang X (2002) Adsorption and desorption of copper (II) from solutions on new spherical cellulose adsorbent. J App Polym Sci 84:478–485. doi:10.1002/app.10114

    Article  CAS  Google Scholar 

  19. Say R, Birlik E, Ersoz A, Yilmaz F, Gedikbey T, Denizli A (2003) Preconcentration of copper on ion-selective imprinted polymer microbeads. Anal Chim Acta 480:251–258. doi:10.1016/S0003-2670(02)01656-2

    Article  CAS  Google Scholar 

  20. Lee ST, Mi FL, Shen YJ, Shyu SS (2001) Equilibrium and kinetic studies of copper (II) ion uptake by chitosan-tripolyphosphate chelating resin. Polymer 42:1879–1892. doi:10.1016/S0032-3861(00)00402-X

    Article  CAS  Google Scholar 

  21. Kumar GP, Kumar PA, Chakraborty S, Ray M (2007) Uptake and desorption of copper ion using functionalized polymer coated silica gel in aqueous environment. Sep Purif Technol 57:47–56. doi:10.1016/j.seppur.2007.03.003

    Article  CAS  Google Scholar 

  22. Wan Ngah WS, Endud CS, Mayanar R (2002) Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym 50:181–190. doi:10.1016/S1381-5148(01)00113-4

    Article  Google Scholar 

  23. Chiou MS, Ho PY, Li HY (2003) Adsorption behavior of dye AAVN and RB4 in acid solutions on chemically cross-linked chitosan beads. J Chin Chem Eng 34:625–634

    CAS  Google Scholar 

  24. Chen J, Zhang W, Li X (2015) Adsorption of Cu(II) ion from aqueous solution on hydrogel prepared from Konjac glucomannan. Bull, Polym. doi:10.1007/s00289-015-1588-9

    Google Scholar 

  25. Lagergren SK (1898) Zur theorie der sagenannten adsorption geloster stoffe. Sven Valenskapsakad Handl 24:1–39

    Google Scholar 

  26. Ho LS, Chiang C (2001) Sorption studies of acid dye by mixed sorbents. Adsorption 7:139–147. doi:10.1023/A:1011652224816

    Article  CAS  Google Scholar 

  27. Weber WJ Jr, Morris JL (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Google Scholar 

  28. Zalloum HM, Mubarak MS (2012) Chapter 1. In: Thomas S, Ninan N, Mohan S, Francis E (eds) Natural polymers, biopolymers, biomaterials, and their composites, blends, and IPNs. CRC Press, Boca Raton, p 1

    Google Scholar 

  29. Aksu Z, Tezer S (2000) Equilibrium and kinetic modelling of biosorption of Remazol Black B by Rhizopus arrhizus in a batch system: effect of temperature. Process Biochem 36:431–439. doi:10.1016/S0032-9592(00)00233-8

    Article  CAS  Google Scholar 

  30. Schweigert N, Zehnder AJB, Eggen RIL (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91. doi:10.1046/j.1462-2920.2001.00176.x

    Article  CAS  Google Scholar 

  31. Elliot HA, Huang CP (1981) Adsorption characteristics of some Cu (II) complexes on alumino silicates. Water Res 15:849–855. doi:10.1016/0043-1354(81)90139-1

    Article  Google Scholar 

  32. Crescenzi V, Airoldi C, Dentini M, Pietrelli L, Rizzo R (1981) Calorimetric data on salt-induced conformational transitions of ionic polysaccharides in aqueous solution. Makromol Chem 182:219–223. doi:10.1002/macp.1981.021820124

    Article  CAS  Google Scholar 

  33. Liu M, Deng Y, Zhan H, Zhang X (2001) Adsorption and desorption of copper (II) from solutions on new spherical cellulose adsorbent. J Appl Pol Sci 84:478–485. doi:10.1002/app.10114

    Article  Google Scholar 

Download references

Acknowledgments

The work was financially supported by the Italian Ministry of Education, University and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loris Pietrelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietrelli, L., Palombo, M., Taresco, V. et al. Copper (II) adsorption capacity of a novel hydroxytyrosol-based polyacrylate. Polym. Bull. 74, 1175–1191 (2017). https://doi.org/10.1007/s00289-016-1770-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1770-8

Keywords

Navigation