Skip to main content
Log in

Removal of chromium(VI) from aqueous solutions using polypyrrole-based magnetic composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

PPy/Fe3O4/AgCl composites were prepared via in situ polymerization for the removal of highly toxic Cr(VI). The structure and morphology of the prepared composites were characterized by the XRD, SEM, TEM, and VSM examinations. Up to 100 % removal was found with 1000 mg/L Cr(VI) aqueous solution at pH 2.0. The process of Cr(VI) ions’ adsorption was easy to reach equilibrium at higher temperatures. Adsorption results showed that Cr(VI) removal efficiency by the composites decreased with an increase in pH. Adsorption kinetics was described by the pseudo-second-order rate model. Isotherm data fitted well to the Langmuir isotherm model. Desorption experiment showed that the regenerated adsorption of PPy/Fe3O4/AgCl can be reused successfully for three times successive adsorption–desorption cycles without appreciable loss of its original capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hasani T, Eisazadeh H (2013) Removal of Cd (II) by using polypyrrole and its nanocomposites. Synth Met 175:15–20

    Article  CAS  Google Scholar 

  2. Mekatel H, Amokrane S, Bellal B, Trari M, Nibou D (2012) Photocatalytic reduction of Cr(VI) on nanosized Fe2O3 supported on natural algerian clay: characteristics, kinetic and thermodynamic study. Chem Eng J 200–202:611–618

    Article  Google Scholar 

  3. Sun JM, Li F, Huang JC (2006) Optimum pH for Cr6+ Co-removal with mixed Cu2+, Zn2+, and Ni2+ precipitation. Ind Eng Chem Res 45:1557–1562

    Article  CAS  Google Scholar 

  4. Baral SS, Das SN, Chaudhury GR, Swamy YV, Rath P (2008) Adsorption of Cr(VI) using thermally activated weed Salvinia cucullata. Chem Eng J 139:245–255

    Article  CAS  Google Scholar 

  5. Shen H, Pan S, Zhang Y, Huang X, Gong H (2012) A new insight on the adsorption mechanism of amino-functionalized nano-Fe3O4 magnetic polymers in Cu(II), Cr(VI) co-existing water system. Chem Eng J 183:180–191

    Article  CAS  Google Scholar 

  6. Chowdhury SR, Yanful EK, Pratt AR (2012) Chemical states in XPS and Raman analysis during removal of Cr(VI) from contaminated water by mixed maghemite-magnetite NPs. J Hazard Mater 235–236:246–256

    Article  Google Scholar 

  7. Pan SD, Shen HY, Xu QH, Luo J, Hu MQ (2012) Surface mercapto engineered magnetic Fe3O4 nanoadsorbent for the removal of mercury from aqueous solutions. J Colloid Interface Sci 365:204–212

    Article  CAS  Google Scholar 

  8. Perova TM, Fachikov L, Hristov J (2011) The magnetite as adsorbent for some hazardous species from aqueous solutions: a review. Int Rev Chem Eng (IRECHE) 3:134–152

    Google Scholar 

  9. Amin MM, Khodabakhshi A, Mozafari M, Bina B, Kheiri S (2010) Removal of Cr(VI) from simulated electroplating wastewater by magnetite NPs. Environ Eng Manag J 9:921–927

    CAS  Google Scholar 

  10. Yuan P, Fan M, Yang D, He H, Liu D, Zhu T, Chn T (2009) Motmorillonite-supported magnetite NPs for the removal of Cr(VI) from aqueous solutions. J Hazard Mater 166:821–829

    Article  CAS  Google Scholar 

  11. Tahmasebi E, Yamini Y, Seidi S, Rezazadeh M (2013) Extraction of three nitrophenols using polypyrrole-coated magnetic NPs based on anion exchange process. J. Chromatogr A 1314:15–23

    Article  CAS  Google Scholar 

  12. Qiao P, Zhao B, Nan Z (2013) Facile fabrication of ZnLa0.02Fe1.98O4/PPy and application in water treatment. Mater Sci Eng B 178:1476–1482

    Article  CAS  Google Scholar 

  13. Massoumi B, Aalia N, Jaymand M (2015) Novel nanostructured star-shaped polyaniline derivatives and their electrospun nanofibers with gelatin. RSC Adv 5:107680–107693

    Article  CAS  Google Scholar 

  14. Reddy KR, Sin BC, Ryu KS, Kim J-C, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603

    Article  CAS  Google Scholar 

  15. Hassan M, Reddy KR, Haque E, Faisal SN, Ghasemi S, Minett AI, Gomes VG (2014) Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos Sci Technol 98:1–8

    Article  CAS  Google Scholar 

  16. Reddy KR, Lee KP, Gopalan AI (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotech 7:3117–3125

    Article  CAS  Google Scholar 

  17. Reddy KR, Jeong HM, Lee Y (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. Poly Sci Part A 48:1477–1484

    Article  CAS  Google Scholar 

  18. Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51

    Article  CAS  Google Scholar 

  19. Reddy KR, Sin BC, Ryu KS, Noh J, Lee Y (2009) In situ self-organization of carbon black-polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth Met 159:1934–1939

    Article  CAS  Google Scholar 

  20. Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750

    Article  CAS  Google Scholar 

  21. Reddy KR, Lee KP, Gopalan AI, Kim MS, Showkat AM, Nho YC (2006) Synthesis of metal (Fe or Pd)/alloy (Fe-Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. Polym Sci Part A 44:3355–3364

    Article  CAS  Google Scholar 

  22. Reddy KR, Lee KP, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer-metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62:1815–1818

    Article  CAS  Google Scholar 

  23. Li J, Cui L, Zhang X (2010) Preparation and electrochemistry of one-dimensional nanostructured MnO2/PPy composite for electrochemical capacitor. Appl Surf Sci 256:4339–4343

    Article  CAS  Google Scholar 

  24. Zhao B, Nan Z (2012) Formation of self-assembled nano fiber-like Ag@PPy core/shell structures induced by SDBS. Mater Sci Eng C 32:1971–1975

    Article  CAS  Google Scholar 

  25. Gniadek M, Modzelewska S, Donten M, Stojek Z (2010) Modification of electrode surfaces: deposition of thin layers of polypyrrole-Au NPs materials using a combination of interphase synthesis and dip-in method. Anal Chem 82:469–472

    Article  CAS  Google Scholar 

  26. Lei Y, Qian X, Shen J, An X (2012) Integrated reductive/adsorptive detoxification of Cr(VI)-contaminated water by polypyrrole/cellulose fiber composite. Ind Eng Chem Res 51:10408–10415

    Article  CAS  Google Scholar 

  27. Qiu B, Xu C, Sun D, Yi H, Guo J, Zhang X, Qu H, Guerrero M, Wang X, Noel N, Luo Z, Guo Z, Wei S (2014) Polyaniline coated ethyl cellulose with improved hexavalent chromium removal. ACS Sustain Chem Eng 2:2070–2080

    Article  CAS  Google Scholar 

  28. Bhaumik M, Setshedi K, Maity A, Onyango MS (2013) Chromium(VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Sep Purif Technol 110:11–19

    Article  CAS  Google Scholar 

  29. Mo ZL, Zhang C, Guo RB, Meng SJ, Zhang JX (2011) Synthesis of Fe3O4 NPs using controlled ammonia vapor diffusion under ultrasonic irradiation. Ind Eng Chem Res 50:3534–3539

    Article  CAS  Google Scholar 

  30. Batool A, Kanwal F, Imran M, Jamil T, Siddiqi SA (2012) Synthesis of polypyrrole/zinc oxide composites and study of their structural, thermal and electrical properties. Synth Met 161:2753–2758

    Article  Google Scholar 

  31. Yamashita Y, Aoyama N, Takezawa N, Yosida K (2000) Characterization of highly active AgCl/Al2O3 catalyst for photocatalytic conversion of NO. Environ Sci Technol 34:5211–5214

    Article  CAS  Google Scholar 

  32. Bhaumika M, Maity A, Srinivasuc VV, Onyango MS (2011) Enhanced removal of Cr(VI)from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite. J Hazard Mater 190:381–390

    Article  Google Scholar 

  33. Sun W, Mo Z (2013) PPy/graphene nanosheets/rare earth ions: a new composite electrode material for supercapacitor. Mater Sci Eng B 178:527–532

    Article  CAS  Google Scholar 

  34. Semenikhin OA, Jiang L, Iyoda T, Hashimoto K, Fujishima A (1997) A Kelvin Probe force microscopic study of the local dopant distribution in conducting polybithiophene. Electrochim Acta 42:3321–3326

    Article  CAS  Google Scholar 

  35. Zhang H, Zhong X, Xu J, Chen H (2008) Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties. Langmuir 24:13748–13752

    Article  CAS  Google Scholar 

  36. Sim B, Chae HS, Choi HJ (2015) Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields. Express Polym Lett 9:736–743

    Article  CAS  Google Scholar 

  37. Reddy KR, Lee KP, Gopalan AI, Kang HD (2007) Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: synthesis and characterization. React Funct Polym 67:943–954

    Article  CAS  Google Scholar 

  38. Reddy KR, Park W, Sin BC, Noh J, Lee Y (2009) Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J Colloid Interface Sci 335:34–39

    Article  CAS  Google Scholar 

  39. Zhang X, Lin M, Lin X, Zhang C, Wei H, Zhang H, Yang B (2014) Polypyrrole-enveloped Pd and Fe3O4 NPs binary hollow and bowl-like superstructures as recyclable catalysts for industrial wastewater treatment. ACS Appl Mater Interfaces 6:450–458

    Article  CAS  Google Scholar 

  40. Bhaumik M, Maity A, Srinivasu VV, Onyango MS (2012) Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers. Chem Eng J 181–182:323–333

    Article  Google Scholar 

  41. Zhang R, Ma H, Wang B (2010) Removal of chromium(VI) from aqueous solutions using polyaniline doped with sulfuric acid. Ind Eng Chem Res 49:9998–10004

    Article  CAS  Google Scholar 

  42. Yuan P, Liu D, Fan M, Yang D, Zhu R, Ge F, Zhu J, He H (2010) Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite NPs. J Hazard Mater 173:614–621

    Article  CAS  Google Scholar 

  43. Guo X, Fei GT, Su H, Zhang LD (2011) High-performance and reproducible polyaniline nanowire/tubes for removal of Cr(VI) in aqueous solution. J Phys Chem C 115:1608–1613

    Article  CAS  Google Scholar 

  44. Kong D, Zhang F, Wang K, Ren Z, Zhang W (2014) Fast removal of Cr(VI) from aqueous solution using Cr(VI)-imprinted polymer particles. Ind Eng Chem Res 53:4434–4441

    Article  CAS  Google Scholar 

  45. Chen J, Hong X, Xie Q, Li D, Zhang Q (2014) Sepiolite fiber oriented-polypyrrole nanofibers for efficient chromium(VI) removal from aqueous solution. J Chem Eng Data 59:2275–2282

    Article  CAS  Google Scholar 

  46. Alcaraz-Espinoza JJ, Chávez-Guajardo AE, Medina-Llamas JC, Andrade CAS, Melo CP (2015) Hierarchical composite polyaniline-(electrospun polystyrene) fibers applied to heavy metal remediation. ACS Appl Mater Interfaces 7:7231–7240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial supports of the Science and Technology Plan of Gansu Province (145RJZA224), supported by the fund of the Education Department of Gansu Province (2014B-007), the financial supported by the fund Key Laboratory and Engineering Center of Independent Study of Northwest University for Nationalities (zyp2015016), supported by funds of Central Universities Fundamental Research (31920160011), supported by fund of the National natural Science Foundation of China (51563022), and supported by the fund of Gansu Science and Technology Support Projects (1504GKCA093).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanhong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Zhou, Y., Su, Q. et al. Removal of chromium(VI) from aqueous solutions using polypyrrole-based magnetic composites. Polym. Bull. 74, 1157–1174 (2017). https://doi.org/10.1007/s00289-016-1769-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1769-1

Keywords

Navigation