Skip to main content
Log in

Using diethylamine as crosslinking agent for getting polyepichlorohydrin-based composite membrane with high tensile strength and good chemical stability

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A composite anion exchange membrane of crosslinked quaternized polyepichlorohydrin/polytetrafluoroethylene (CQPECH/PTFE) had been prepared via a green and facile method, where diethylamine, 1-methylimidazole and PTFE, respectively, served as crosslinking agent, quaternization reagent and supporting material. The structure and morphology of CQPECH/PTFE membrane were investigated. Water uptake, swelling ratio, ionic exchange capacity, hydroxide conductivity, chemical stability, and thermal and mechanical properties were measured to evaluate its performance in a direct methanol alkaline fuel cell. The results indicated that CQPECH had penetrated into the pores of PTFE membrane, showing a dense and uniform structure without any pore and phase separation. Besides, CQPECH/PTFE membrane exhibited high ionic conductivity, considerable ionic exchange capacity, moderate water uptake and low swelling ratio. More importantly, the obtained composite membrane displayed high tensile strength and good chemical and thermal stability, suggesting the great potential application of CQPECH/PTFE membrane as anion exchange membrane.

Graphical abstract

Crosslinked quaternized polyepichlorohydrin/polytetrafluoroethylene composite anion exchange membrane had been prepared via a green and facile method, where diethylamine served as crosslinking agent. With a dense and uniform structure without any pore and phase separation, the obtained composite membrane exhibited high tensile strength and good chemical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrog Energy 27:507–526

    Article  CAS  Google Scholar 

  2. Liu Z, Zhu XL, Wang GF, Hou XX, Liu DZ (2013) Novel crosslinked alkaline exchange membranes based on poly(phthalazinone ether ketone) for anion exchange membrane fuel cell applications. J Polym Sci Pol Phys 51:1632–1638

    CAS  Google Scholar 

  3. Hou HY, Sun GQ, He RH, Wu ZM, Sun BY (2008) Alkali doped polybenzimidazole membrane for high performance alkaline direct ethanol fuel cell. J Power Sources 182:95–99

    Article  CAS  Google Scholar 

  4. Xu CW, Cheng LQ, Shen PK, Liu YL (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9:997–1001

    Article  CAS  Google Scholar 

  5. Liu JP, Ye JQ, Xu CW, Jiang SP, Tong YX (2007) Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti. Electrochem Commun 9:2334–2339

    Article  CAS  Google Scholar 

  6. Meng H, Shen PK (2006) Novel Pt-free catalyst for oxygen electroreduction. Electrochem Commun 8:588–594

    Article  CAS  Google Scholar 

  7. Zhao Y, Yu HM, Xing DM, Lu WT, Shao ZG, Yi BL (2012) Preparation and characterization of PTFE based composite anion exchange membranes for alkaline fuel cells. J Membr Sci 421–422:311–317

    Article  Google Scholar 

  8. Kim DS, Labouriau A, Guiver MD, Kim YS (2011) Guanidinium-functionalized anion exchange polymer electrolytes via activated fluorophenyl-amine reaction. Chem Mater 23:3795–3797

    Article  CAS  Google Scholar 

  9. Wang JH, Li SH, Zhang SB (2010) Novel hydroxide-conducting polyelectrolyte composed of an poly(arylene ether sulfone) containing pendant quaternary guanidinium groups for alkaline fuel cell applications. Macromolecules 43:3890–3896

    Article  CAS  Google Scholar 

  10. Wang GG, Weng YM, Chu D, Xie D, Chen RR (2009) Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. J Membr Sci 326:4–8

    Article  CAS  Google Scholar 

  11. Xiong Y, Liu QL, Zeng QH (2009) Quaternized cardo polyetherketone anion exchange membrane for direct methanol alkaline fuel cells. J Power Sources 193:541–546

    Article  CAS  Google Scholar 

  12. Liu GS, Shang YM, Xie XF, Wang SB, Wang JH, Wang YW, Mao ZQ (2012) Synthesis and characterization of anion exchange membranes for alkaline direct methanol fuel cells. Int J Hydrog Energy 37:848–853

    Article  CAS  Google Scholar 

  13. Wu L, Xu TW, Yang WH (2006) Fundamental studies of a new series of anion exchange membranes: membranes prepared through chloroacetylation of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) followed by quaternary amination. J Membr Sci 286:185–192

    Article  CAS  Google Scholar 

  14. Wu L, Xu TW (2008) Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J Membr Sci 322:286–292

    Article  CAS  Google Scholar 

  15. Xu TW, Hu KY (2004) A simple determination of counter-ionic permselectivity in anion exchange membrane from bi-ionic membrane potential measurements: permselectivity of anionic species in a novel anion exchange membrane. Sep Purif Technol 40:231–236

    Article  CAS  Google Scholar 

  16. Yan XM, He GH, Gu S, Wu XM, Du LG, Zhang HY (2011) Quaternized poly(ether ether ketone) hydroxide exchange membranes for fuel cells. J Membr Sci 375:204–211

    Article  CAS  Google Scholar 

  17. Hu QH, Shang YM, Wang YW, Xu M, Wang SB, Xie XF, Liu YG, Zhang HL, Wang JH, Mao ZQ (2012) Preparation and characterization of fluorinated poly(aryl ether oxadiazole)s anion exchange membranes based on imidazolium salts. Int J Hydrog Energy 37:12659–12665

    Article  CAS  Google Scholar 

  18. Varcoe JR, Slade RTC, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mater 19:2686–2693

    Article  CAS  Google Scholar 

  19. Varcoe JR, Slade RTC (2006) An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells. Electrochem Commun 8:839–843

    Article  CAS  Google Scholar 

  20. Yang CC, Chiu SJ, Chien WC, Chiu SS (2010) Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells. J Power Sources 195:2212–2219

    Article  CAS  Google Scholar 

  21. Itsuno S, Uchikoshi K, Ito K (1990) Novel method for halomethylation of cross-linked polystyrenes. J Am Chem Soc 112:8187–8188

    Article  CAS  Google Scholar 

  22. Couture G, Alaaeddine A, Boschet F, Ameduri B (2011) Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog Polym Sci 36:1521–1577

    Article  CAS  Google Scholar 

  23. Guo TY, Zeng QH, Zhao CH, Liu QL, Zhu AH, Broadwell L (2011) Quaternized polyepichlorohydrin/PTFE composite anion exchange membranes for direct methanol alkaline fuel cells. J Membr Sci 371:268–275

    Article  CAS  Google Scholar 

  24. Ngo HL, LeCompte K, Hargens L, McEwen AB (2000) Thermal properties of imidazolium ionic liquids. Thermochim Acta 357–358:97–102

    Article  Google Scholar 

  25. Awad WH, Gilman JW, Nyden M, Harris RH, Sutto TE, Callahan J, Trulove PC, DeLong HC, Fox DM (2004) Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochim Acta 409:3–11

    Article  CAS  Google Scholar 

  26. Ran J, Wu L, Varcoe JR, Ong AL, Poynton SD, Xu TW (2012) Development of imidazolium-type alkaline anion exchange membranes for fuel cell application. J Membr Sci 415–416:242–249

    Article  Google Scholar 

  27. Zhang FX, Zhang HM, Qu C (2011) Imidazolium functionalized polysulfone anion exchange membrane for fuel cell application. J Mater Chem 21:12744–12752

    Article  CAS  Google Scholar 

  28. Li W, Fang J, Lv M, Chen CX, Chi XJ, Yang YX, Zhang YM (2011) Novel anion exchange membranes based on polymerizable imidazolium salt for alkaline fuel cell applications. J Mater Chem 21:11340–11346

    Article  CAS  Google Scholar 

  29. Sollogoub C, Guinault A, Bonnebat C, Bennjima M, Akrour L, Fauvarque JF, Ogier L (2009) Formation and characterization of crosslinked membranes for alkaline fuel cells. J Membr Sci 335:37–42

    Article  CAS  Google Scholar 

  30. Zhao Y, Pan J, Yu HM, Yang DL, Li J, Zhuang L, Shao ZG, Yi BL (2013) Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane for fuel cells application. Int J Hydrog Energy 38:1983–1987

    Article  CAS  Google Scholar 

  31. Liu FQ, Yi BL, Xing DM, Yu JR, Zhang HM (2003) Nafion/PTFE composite membranes for fuel cell applications. J Membr Sci 212:213–223

    Article  CAS  Google Scholar 

  32. Tang HL, Pan M, Wang F, Shen PK, Jiang SP (2007) Highly durable proton exchange membranes for low temperature fuel cells. J Phys Chem 111:8684–8690

    Article  CAS  Google Scholar 

  33. Pan J, Li Y, Zhuang L, Lu J (2010) Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 °C. Chem Commun 46:8597–8599

    Article  CAS  Google Scholar 

  34. Zhao Y, Yu HM, Yang DL, Li J, Shao ZG, Yi BL (2013) High-performance alkaline fuel cells using crosslinked composite anion exchange membrane. J Power Sources 221:247–251

    Article  CAS  Google Scholar 

  35. Zhang N, Liu HL, Li JJ, Zhi X (2009) Preparation and properties of spaes-TiO2 hybrid membranes for direct methanol fuel cell. Chin J Polym Sci 27:895–902

    Article  CAS  Google Scholar 

  36. Zhang F, Zhang H, Ren J, Qu C (2010) PTFE based composite anion exchange membranes: thermally induced in situ polymerization and direct hydrazine hydrate fuel cell application. J Mater Chem 20:8139–8146

    Article  CAS  Google Scholar 

  37. Lin X, Liang X, Poynton SD, Varcoe JR, Ong AL, Ran J, Li Y, Li Q, Xu TW (2013) Novel alkaline anion exchange membranes containing pendant benzimidazolium groups for alkaline fuel cells. J Membr Sci 443:193–200

    Article  CAS  Google Scholar 

  38. Choi BG, Hong J, Park YC, Jung DH, Hong WH, Hammond PT, Park H (2011) Innovative polymer nanocomposite electrolytes: nanoscale manipulation of ion channels by functionalized graphenes. ACS Nano 5:5167–5174

    Article  CAS  Google Scholar 

  39. Wang X, Li M, Golding BT, Sadeghi M, Cao Y, Yu EH, Scott K (2011) A polytetrafluoroethylene-quaternary 1,4-diazabicyclo-[2.2.2]-octane polysulfone composite membrane for alkaline anion exchange membrane fuel cells. Int J Hydrog Energy 36:10022–10026

    Article  CAS  Google Scholar 

  40. Cao YC, Scott K, Wang X (2012) Preparation of polytetrafluoroethylene porous membrane based composite alkaline exchange membrane with improved tensile strength and its fuel cell test. Int J Hydrog Energy 37:12688–12693

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledged financial support from the National Natural Science Foundation of China (21271087, 21476052 and 51172099), the Foundation of Enterprise-University- Research Institute Cooperation from Guangdong Province and the Ministry of Education of China (2013B090600148), and the Science and Technology Innovation Platform Project of Foshan City (2015AG10020 and 2014AG100171).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaozao Tan or Ting Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Liu, H., Liu, H. et al. Using diethylamine as crosslinking agent for getting polyepichlorohydrin-based composite membrane with high tensile strength and good chemical stability. Polym. Bull. 74, 625–639 (2017). https://doi.org/10.1007/s00289-016-1734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1734-z

Keywords

Navigation