Skip to main content
Log in

Quantification of silane grafting efficacy, weak IR vibration bands and percentage crystallinity in post e-beam irradiated UHMWPE

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Vinyl-tri-methoxy silane (VTMS) and vinyl-tri-ethoxy silane (VTES) were grafted onto ultra-high molecular weight polyethylene (UHMWPE) by irradiating the UHMWPE/silane hybrids with e-beam. The samples were irradiated under high moisture contents for total dose values of 30, 65 and 100 kGy, respectively. The synergistic effect of silane and irradiation on the grafting efficacy, concentration of weak bonds like trans-vinylene (–CH=CH–) and vinyl (–CH=CH2) and percentage values of crystallinity were studied using FTIR spectroscopy. For the estimation of grafting reactions efficiency, absorption due to characteristic infrared absorption bands of –Si–CH– in the region ~800 cm−1 was monitored and found that grafting efficacy of VTMS on UHMWPE was higher as compared to VTES and increased with irradiation. The relative amounts of grafting extension (R) for 100 kGy irradiated UHMWPE/VTMS and UHMWPE/VTES hybrids were found to increase 20 and 15 %, respectively. The concentration of trans-vinylene in UHMWPE was found to increase from 0.015 to 0.035 mmol/l due to synergistic effects of silane and irradiation. Moreover, crystallinity of UHWMPE was found to decrease from 65 to 55 % due to the abovementioned synergistic effects which was also confirmed with DSC tests. Furthermore, oxidation index values were measured to confirm the efficacy of silane as free radical quencher via silane grafting extension reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hofsté JM, Bergmans KJR, de Boer J, Wevers R, Pennings AJ (1996) Short aramid-fiber reinforced ultra-high molecular weight polyethylene. Polym Bull 36(2):213–220. doi:10.1007/BF00294909

    Article  Google Scholar 

  2. Hofsté JM, van Voorn B, Pennings AJ (1997) Mechanical and tribological properties of short discontinuous UHMWPE fiber reinforced UHMWPE. Polym Bull 38(4):485–492. doi:10.1007/s002890050077

    Article  Google Scholar 

  3. Yim CI, Lee KJ, Jho JY, Choi K (1999) Wear resistance of some modified ultra-high molecular weight polyethylenes and its correlation with tensile properties. Polym Bull 42(4):433–440. doi:10.1007/s002890050486

    Article  CAS  Google Scholar 

  4. Panin SV, Kornienko LA, Piriyaon S, Ivanova LR, Shil’ko SV, Pleskachevskii YM, Orlov VM (2011) Antifrictional composites based on chemically modified UHMWPE. Part 2. The effect of nanofillers on the mechanical and triboengineering properties of chemically modified UHMWPE. J Frict Wear 32(4):269–275. doi:10.3103/S106836661104009X

    Article  Google Scholar 

  5. Sreekanth P, Kanagaraj S (2014) Influence of MWCNTs and gamma irradiation on thermal characteristics of medical grade UHMWPE. Bull Mater Sci 37(2):347–356. doi:10.1007/s12034-014-0640-y

    Article  CAS  Google Scholar 

  6. Oral E, Muratoglu O (2011) Vitamin E diffused, highly crosslinked UHMWPE: a review. Int Orthop (SICOT) 35(2):215–223. doi:10.1007/s00264-010-1161-y

    Article  Google Scholar 

  7. Zifeng N, Shirong G (2010) The biotribological behavior researches on the α-tocopherol doped and gamma-irradiated UHMWPE. In: Luo J, Meng Y, Shao T, Zhao Q (eds) Advanced tribology. Springer Berlin, Heidelberg, pp 823–824. doi:10.1007/978-3-642-03653-8_271

    Google Scholar 

  8. Huot JC, Van Citters DW, Currier JH, Collier JP (2011) The effect of radiation dose on the tensile and impact toughness of highly cross-linked and remelted ultrahigh-molecular weight polyethylenes. J Biomed Mater Res B Appl Biomater 97B(2):327–333. doi:10.1002/jbm.b.31818

    Article  CAS  Google Scholar 

  9. Oral E, Muratoglu OK (2007) Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications. Nucl Instrum Methods Phys Res Sect B 265(1):18–22. doi:10.1016/j.nimb.2007.08.022

    Article  CAS  Google Scholar 

  10. Wu X, Wu C, Wang G, Jiang P, Zhang J (2013) A crosslinking method of UHMWPE irradiated by electron beam using TMPTMA as radiosensitizer. J Appl Polym Sci 127(1):111–119. doi:10.1002/app.35573

    Article  CAS  Google Scholar 

  11. Kamal A, Bashir M, Firdous S, Yasin T, Tariq M, Ikram M, Mehmood MS (2016) Optical properties of ultra-high molecular weight polyethylene (UHMWPE): a material of choice for total joint applications. Radiat Phys Chem 118:102–106. doi:10.1016/j.radphyschem.2015.03.012

    Article  CAS  Google Scholar 

  12. Dijkstra DJ, Pennings AJ (1988) Cross-linking of porous gel-spun ultra-high molecular weight polyethylene by means of electron beam irradiation. Polym Bull 20(6):557–562. doi:10.1007/BF00263672

    Article  CAS  Google Scholar 

  13. Kuan C-F, Kuan H-C, Ma C-CM, Huang C-M (2006) Mechanical, thermal and morphological properties of water-crosslinked wood flour reinforced linear low-density polyethylene composites. Compos A Appl Sci Manuf 37(10):1696–1707. doi:10.1016/j.compositesa.2005.09.020

    Article  Google Scholar 

  14. Atkinson JR, Cicek RZ (1983) Silane cross-linked polyethylene for prosthetic applications Part I. Certain physical and mechanical properties related to the nature of the material. Biomaterials 4(4):267–275. doi:10.1016/0142-9612(83)90026-1

    Article  CAS  Google Scholar 

  15. Gul R (2008) The effects of peroxide content on the wear behavior, microstructure and mechanical properties of peroxide crosslinked ultra-high molecular weight polyethylene used in total hip replacement. J Mater Sci Mater Med 19(6):2427–2435. doi:10.1007/s10856-008-3368-7

    Article  CAS  Google Scholar 

  16. Tang CY, Xie XL, Wu XC, Li RKY, Mai YW (2002) Enhanced wear performance of ultra high molecular weight polyethylene crosslinked by organosilane. J Mater Sci Mater Med 13(11):1065–1069. doi:10.1023/A:1020352923972

    Article  CAS  Google Scholar 

  17. Xie XL, Tang CY, Chan KYY, Wu XC, Tsui CP, Cheung CY (2003) Wear performance of ultrahigh molecular weight polyethylene/quartz composites. Biomaterials 24(11):1889–1896. doi:10.1016/S0142-9612(02)00610-5

    Article  CAS  Google Scholar 

  18. Sibeko MA, Luyt AS (2014) Preparation and characterisation of vinylsilane crosslinked low-density polyethylene composites filled with nano clays. Polym Bull 71(3):637–657. doi:10.1007/s00289-013-1083-0

    Article  CAS  Google Scholar 

  19. Shafiq M, Mehmood MS, Yasin T (2013) On the structural and physicochemical properties of gamma irradiated UHMWPE/silane hybrid. Mater Chem Phys 143(1):425–433. doi:10.1016/j.matchemphys.2013.09.023

    Article  CAS  Google Scholar 

  20. Shibata N, Kurtz SM, Tomita N (2006) Recent advances of mechanical performance and oxidation stability in ultrahigh molecular weight polyethylene for total joint replacement: highly crosslinked and α-tocopherol doped. J Biomech Sci Eng 1(1):107–123. doi:10.1299/jbse.1.107

    Article  Google Scholar 

  21. Costa L, Carpentieri I, Bracco P (2008) Post electron-beam irradiation oxidation of orthopaedic UHMWPE. Polym Degrad Stab 93(9):1695–1703. doi:10.1016/j.polymdegradstab.2008.06.003

    Article  CAS  Google Scholar 

  22. Costa L, Carpentieri I, Bracco P (2009) Post electron-beam irradiation oxidation of orthopaedic ultra-high molecular weight polyethylene (UHMWPE) stabilized with vitamin E. Polym Degrad Stab 94(9):1542–1547. doi:10.1016/j.polymdegradstab.2009.04.023

    Article  CAS  Google Scholar 

  23. Ahmed GS, Gilbert M, Mainprize S, Rogerson M (2009) FTIR analysis of silane grafted high density polyethylene. Plast Rubber Compos 38(1):13–20. doi:10.1179/174328909X387711

    Article  CAS  Google Scholar 

  24. Khan H, Gahfoor B, Mehmood MS, Ahmad M, Yasin T, Ikram M (2015) Spectroscopic and sub optical band gap properties of e-beam irradiated ultra-high molecular weight polyethylene. Radiat Phys Chem 117:172–177. doi:10.1016/j.radphyschem.2015.08.013

    Article  CAS  Google Scholar 

  25. Costa L, Regis M, Bracco P, Giorgini L, Fusi S (2012) Characterisation of vitamin E-blended UHMWPE for higher in vivo performance in orthopaedic arthroplasty. In: Knahr K (ed) Total hip arthroplasty. Springer Berlin, Heidelberg, pp 41–57. doi:10.1007/978-3-642-27361-2_5

    Chapter  Google Scholar 

  26. Jahan MS, Wang C, Schwartz G, Davidson JA (1991) Combined chemical and mechanical effects on free radicals in UHMWPE joints during implantation. J Biomed Mater Res 25(8):1005–1017. doi:10.1002/jbm.820250807

    Article  CAS  Google Scholar 

  27. Oral E, Neils AL, Wannomae KK, Muratoglu OK (2014) Novel active stabilization technology in highly crosslinked UHMWPEs for superior stability. Radiat Phys Chem 105:6–11. doi:10.1016/j.radphyschem.2014.05.017

    Article  CAS  Google Scholar 

  28. Mehmood M, Yasin T, Jahan M, Walters B, Ahmad M, Ikram M (2013) EPR study of γ-irradiated UHMWPE doped with vitamin E: assessment of thermal effects on the organic radicals during vitamin E diffusion. Appl Magn Reson 44(4):531–542. doi:10.1007/s00723-012-0421-y

    Article  CAS  Google Scholar 

  29. Mehmood MS, Hafeez U, Jahan MS, Mishra S, Walters BM, Ikram M (2012) The effect of high dose of gamma-irradiation on residual radicals concentration in ultra-high molecular weight polyethylene (UHMWPE) in the presence of vitamin E. Polym Sci Ser A 54(5):343–348. doi:10.1134/S0965545X12040062

    Article  CAS  Google Scholar 

  30. Parth M, Aust N, Lederer K (2002) Studies on the effect of electron beam radiation on the molecular structure of ultra-high molecular weight polyethylene under the influence of α-tocopherol with respect to its application in medical implants. J Mater Sci Mater Med 13(10):917–921. doi:10.1023/A:1019892004830

    Article  CAS  Google Scholar 

  31. ASTM, D3418-15 2015. Standard test method for transition temperatures and enthalpies of fusion and crystallization of polymers by differential scanning calorimetry. ASTM International, West Conshohocken, http://www.astm.org

Download references

Acknowledgments

Dr. Malik Sajjad Mehmood acknowledges the financial support from the Directorate of ASR&TD under the approved research project entitled “Non-destructive radiation dosimetry using FT-IR and UV–Visible spectroscopy”, for completing this research work. The technical and moral support from PIEAS is also acknowledged here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Sajjad Mehmood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, M.S., Sanawar, A., Siddiqui, N. et al. Quantification of silane grafting efficacy, weak IR vibration bands and percentage crystallinity in post e-beam irradiated UHMWPE. Polym. Bull. 74, 213–227 (2017). https://doi.org/10.1007/s00289-016-1709-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1709-0

Keywords

Navigation