Skip to main content
Log in

A novel biosensor based on electro-co-deposition of sodium alginate-Fe3O4-graphene composite on the carbon ionic liquid electrode for the direct electrochemistry and electrocatalysis of myoglobin

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel biosensor based on electro-co-deposition of myoglobin (Mb), sodium alginate (SA), Fe3O4-graphene (Fe3O4-GR) composite on the carbon ionic liquid electrode (CILE) was fabricated using Nafion as the film forming material to improve the stability of protein immobilized on the electrode surface, and the modified electrode was abbreviated as Nafion/Mb-SA-Fe3O4-GR/CILE. FT-IR and UV–vis absorption spectra suggested that Mb could retain its native structure after being immobilized in the SA-Fe3O4-GR composite film. The electrochemical behavior of the modified electrode was studied by cyclic voltammetry, and a pair of symmetric redox peaks appeared in the cyclic voltammograms, indicating that direct electron transfer of Mb was realized on the modified electrode, which was ascribed to the good electrocatalytic capability of Fe3O4-GR composite, the good biocompatibility of SA and the synergistic effects of SA and Fe3O4-GR composite. The electrochemical parameters of the electron transfer number (n), the charge transfer coefficient (α) and the electron transfer rate constant (k s) were calculated as 0.982, 0.357 and 0.234 s−1, respectively. The modified electrode exhibited good electrocatalytic ability to the reduction of trichloroacetic acid (TCA) with wide linear range from 1.4 to 119.4 mmol/L, low detection limit as 0.174 mmol/L (3σ), good stability and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu J, Liu CH, Teng YL (2010) Direct electrochemistry and electrocatalysis of hydrogen peroxide using hemoglobin immobilized in hollow zirconium dioxide spheres and sodium alginate films. Microchim Acta 169:181–186

    Article  CAS  Google Scholar 

  2. Pulcu GS, Elmore BL, Arciero DM, Hooper AB, Elliott SJ (2007) Direct electrochemistry of tetraheme cytochrome c554 from nitrosomonas europaea: redox cooperativity and gating. J Am Chem Soc 129(7):1838–1839

    Article  CAS  Google Scholar 

  3. Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Glucose oxidase-graphene-chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Article  CAS  Google Scholar 

  4. Sun W, Cao LL, Deng Y, Gong SX, Shi F, Li GN, Sun ZF (2013) Direct electrochemistry with enhanced electrocatalytic activity of hemoglobin in hybrid modified electrodes composed of graphene and multi-walled carbon nanotubes. Anal Chim Acta 781:41–47

    Article  CAS  Google Scholar 

  5. Andreu R, Ferapontova EE, Gorton L, Calvente JJ (2007) Direct electron transfer kinetics in horseradish peroxidase electrocatalysis. J Phys Chem B 111(2):469–477

    Article  CAS  Google Scholar 

  6. Sun W, Guo YQ, Ju XM, Zhang YY, Wang XZ, Sun ZF (2013) Direct electrochemistry of hemoglobin on graphene and titanium dioxide nanorods composite modified electrode and its electrocatalysis. Biosens Bioelectron 42:207–213

    Article  CAS  Google Scholar 

  7. Sun W, Li XQ, Qin P, Jiao K (2009) Electrodeposition of Co nanoparticles on the carbon ionic liquid electrode as a platform for myoglobin electrochemical biosensor. J Phys Chem C 113(26):11294–11300

    Article  CAS  Google Scholar 

  8. Wang BQ, Zhang JZ, Cheng GJ, Dong SJ (2000) Amperometric enzyme electrode for the determination of hydrogen peroxide based on sol-gel/hydrogel composite film. Anal Chim Acta 407(1–2):111–118

    Article  CAS  Google Scholar 

  9. Wang G, Lu H, Hu N (2007) Electrochemically and catalytically active layer-by-layer films of myoglobin with zirconia formed by vapor-surface sol-gel deposition. J Electroanal Chem 599(1):91–99

    Article  CAS  Google Scholar 

  10. Doretti L, Ferrara D, Lora S, Palma G (1999) Amperometric biosensor involving covalent immobilization of choline oxidase and butyrylcholinesterase on a methacrylate-vinylene carbonate co-polymer. Biotechnol Appl Biochem 29(1):67–72

    CAS  Google Scholar 

  11. Lu Q, Hu SS (2006) Studies on direct electron transfer and biocatalytic properties of hemoglobin in polytetrafluoroethylene film. Chem Phys Lett 424(1–3):167–171

    Article  CAS  Google Scholar 

  12. Zhao HY, Zheng W, Meng ZX, Zhou HM, Xu XX, Li Z, Zheng YF (2009) Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosens Bioelectron 24(8):2352–2357

    Article  CAS  Google Scholar 

  13. Zhao G, Feng JJ, Xu JJ, Chen HY (2005) Direct electrochemistry and electrocatalysis of heme proteins immobilized on self assembled ZrO2 film. Electrochem Commun 7(7):724–729

    Article  CAS  Google Scholar 

  14. Topoglidis E, Astuti Y, Duriaux F, Grätzel M, Durrant JR (2003) Direct electrochemistry and nitric oxide interaction of heme proteins adsorbed on nanocrystalline tin oxide electrodes. Langmuir 19(17):6894–6900

    Article  CAS  Google Scholar 

  15. Pandey P, Datta M, Malhotra BD (2008) Prospects of nanomaterials in biosensors. Anal Lett 41(2):159–209

    Article  CAS  Google Scholar 

  16. Zhou H, Gan X, Wang J, Zhu XL, Li GX (2005) Hemoglobin-based hydrogen peroxide biosensor tuned by the photovoltaic effect of nano titanium dioxide. Anal Chem 77(18):6102–6104

    Article  CAS  Google Scholar 

  17. Abu-Rabeah K, Marks RS (2009) Impedance study of the hybrid molecule alginate-pyrrole: demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor. Sensor Actuator B Chem 136:516–522

    Article  CAS  Google Scholar 

  18. Ding CF, Zhang ML, Zhao F, Zhang SS (2008) Disposable biosensor and biocatalysis of horseradish peroxidase based on sodium alginate film and room temperature ionic liquid. Anal Biochem 378:32–37

    Article  CAS  Google Scholar 

  19. Mittal A, Khurana S, Singh H, Kamboj RC (2005) Characterization of dipeptidylpeptidase IV (DPP IV) immobilized in Ca alginate beads. Enzyme Microb Technol 37(3):318–323

    Article  CAS  Google Scholar 

  20. Liu CH, Guo XL, Cui HT, Yuan R (2009) An amperometric biosensor fabricated from electro-co-deposition of sodium alginate and horseradish peroxidase. J Mol Catal B Enzym 60:151–156

    Article  CAS  Google Scholar 

  21. Navanietha KR, Karthikeyan R, Sheela B, Saravanan C, Parimal P (2013) Functionalization of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of microbial fuel cells. Electrochim Acta 112:465–472

    Article  CAS  Google Scholar 

  22. Li MF, Zhao GH, Geng R, Hu HK (2009) Facile electrocatalytic redox of hemoglobin by flower-like gold nanoparticles on boron-doped diamond surface. Bioelectrochemistry 74(1):217–221

    Article  Google Scholar 

  23. Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloid Surf A 328:73–78

    Article  CAS  Google Scholar 

  24. Freeman I, Kedem A, Cohen S (2008) The effect of sulfation of alginate hydrogels on the specific binding and controlled release of heparin-binding proteins. Biomaterials 29(22):3260–3268

    Article  CAS  Google Scholar 

  25. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  26. Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR (2014) Precise and ultrafast molecular sieving through grapheme oxide membranes. Science 343(6172):752–754

    Article  CAS  Google Scholar 

  27. Yang J, Strickler JR, Gunasekaran S (2012) Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale 4:4594–4602

    Article  CAS  Google Scholar 

  28. Meisl JR, Qu ZW, Zhu H, Kroes GJ, Norskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89

    Article  Google Scholar 

  29. He Z, Gudavarthy RV, Koza JA, Switzer JA (2011) Room-temperature electrochemical reduction of epitaxial magnetite films to epitaxial iron films. J Am Chem Soc 133:12358–12361

    Article  CAS  Google Scholar 

  30. Qu JY, Dong Y, Wang Y, Xing HH (2015) A novel sensor based on Fe3O4 nanoparticles–multiwalled carbon nanotubes composite film for determination of nitrite. Sens BioSens Res 3:74–78

    Google Scholar 

  31. Zhang WX, Zheng JZ, Shi JG, Lin ZQ, Huang QT, Zhang HQ, Wei C, Chen JH, Hu SR, Hao AY (2015) Nafion covered core–shell structured Fe3O4@graphene nanospheres modified electrode for highly selective detection of dopamine. Anal Chim Acta 853:285–290

    Article  CAS  Google Scholar 

  32. Kingsley MP, Desai PB, Srivastava AK (2015) Simultaneous electro-catalytic oxidative determination of ascorbic acid and folic acid using Fe3O4 nanoparticles modified carbon paste electrode. J Electroanal Chem 741:71–79

    Article  CAS  Google Scholar 

  33. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16

    Article  CAS  Google Scholar 

  34. Wang XF, You Z, Sha HL, Gong SX, Niu QJ, Sun W (2014) Direct electrochemistry and electrocatalysis of myoglobin using an ionic liquid-modified carbon paste electrode coated with Co3O4 nanorods and gold nanoparticles. Microchim Acta 181:767–774

    Article  CAS  Google Scholar 

  35. Yan HQ, Chen XQ, Li JC, Feng YH, Shi ZF, Wang XH, Lin Q (2016) Synthesis of alginate derivative via the Ugi reaction and its characterization. Carbohydr Polym 136:757–763

    Article  CAS  Google Scholar 

  36. Wang SF, Chen T, Zhang ZL, Shen XC, Lu ZX, Pang DW, Wong KY (2005) Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir 21(20):9260–9266

    Article  CAS  Google Scholar 

  37. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52(3):355–393

    Article  CAS  Google Scholar 

  38. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusion less electrochemical systems. J Electroanal Chem 101(1):19–28

    Article  CAS  Google Scholar 

  39. Ruan CX, Sun ZL, Liu J, Lou J, Gao W, Sun W, Xiao YS (2012) Direct electrochemistry of hemoglobin on an ionic liquid carbon electrode modified with zinc tungstate nanorods. Microchim Acta 177:457–463

    Article  CAS  Google Scholar 

  40. Kamin RA, Wilson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52(8):1198–1205

    Article  CAS  Google Scholar 

  41. Sun W, Li XQ, Jiao K (2009) Direct electrochemistry of myoglobin in a nafion-ionic liquid composite film modified carbon ionic liquid electrode. Electroanalysis 21:959–964

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank the financial support form the National Natural Science Foundation of China (21366010, 21566009) and Key Projects in the Hainan provincial Science & Technology Program (ZDXM2014037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Lin or Wei Sun.

Additional information

X. Chen and H. Yan are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yan, H., Shi, Z. et al. A novel biosensor based on electro-co-deposition of sodium alginate-Fe3O4-graphene composite on the carbon ionic liquid electrode for the direct electrochemistry and electrocatalysis of myoglobin. Polym. Bull. 74, 75–90 (2017). https://doi.org/10.1007/s00289-016-1698-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1698-z

Keywords

Navigation