Skip to main content
Log in

Chemical structure and remarkably enhanced mechanical properties of chitosan-graft-poly(acrylic acid)/polyacrylamide double-network hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The novel double-network (DN) hydrogels were prepared using the chitosan-g-poly(acrylic acid) as the first network, and polyacrylamide as the second. The effects of the concentrations of the second network on chemical structure, intermolecular interactions and mechanical properties for the DN gels were investigated. The DN hydrogels had decreased swelling capacities and significantly improved glassy modulus and strength with the increase of the acrylamide concentration, owing to the enhanced intermolecular interaction and physical entanglement, and reduced molecular motion. It is worth noting that DN hydrogels with 5.50 mol/L acrylamide content had the greatest mechanical strength and still relatively high water content (~82 wt%), resulting from the effectiveness of the intermolecular penetration and intermolecular interactions between two independent polymer networks. Therefore, the reported novel chitosan-based DN hydrogels exhibit good potentials in some applications, for example biomedical engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  2. Zeng M, Zhang L, Zhou Y (2004) Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethylchitin films. Polymer 45:3535–3545

    Article  CAS  Google Scholar 

  3. Pandey S, Mishra SB (2011) Organic-inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake. J Coll Interf Sci 361:509–520

    Article  CAS  Google Scholar 

  4. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food application. Food Chem 114:1173–1182

    Article  CAS  Google Scholar 

  5. Zeng M, Zhang L (2005) Intermolecular interaction and properties of cross-linked materials from poly(ester-urethane) and nitrochitosan. Carbohydr Polym 60:399–409

    Article  CAS  Google Scholar 

  6. Zeng M, Zhang L, Wang N, Zhu Z (2003) Miscibility and properties of blend membranes of waterborne polyurethane and carboxymethylchitin. J Appl Polym Sci 90:1233–1241

    Article  CAS  Google Scholar 

  7. Zeng M, Zhang L (2006) Effects of temperature on morphology and properties of films prepared from poly (ester-urethane) and nitrochitosan. Macromol Mater Eng 291:148–154

    Article  CAS  Google Scholar 

  8. Spagnol C, Rodrigues FHA, Pereira AGB (2012) Super absorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohydr Polym 87:2038–2045

    Article  CAS  Google Scholar 

  9. Wang WB, Huang DJ, Kang YR (2013) One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Coll Surf B 106:51–59

    Article  CAS  Google Scholar 

  10. Mahdavinia GR, Pourjavadi A, Hosseinzadeh H, Zohuriaan MJ (2004) Modified chitosan 4. super absorbent hydrogels from poly(acrylic acid-coacrylamide) grafted chitosan with salt- and pH-responsiveness properties. Eur Polym J 40:1399–1407

    Article  CAS  Google Scholar 

  11. Rodrigues FHA, Pereira AGB, Fajardo AR, Muniz EC (2013) Synthesis and characterization of chitosan-graft-poly(acrylic acid)/nontronite hydrogel composites based on a design of experiments. J Appl Polym Sci 128:3480–3489

    Article  CAS  Google Scholar 

  12. Huang Y, Zeng M, Feng Z, Yin D, Xu Q, Fan L (2016) Graphene oxide-based composite hydrogels with self-assembled macroporous structures. RSC Adv 6:3561–3570

    Article  CAS  Google Scholar 

  13. Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805–1822

    Article  CAS  Google Scholar 

  14. Bakarich SE, Pidcock GC, Balding P (2012) Recovery from applied strain in interpenetrating polymer network hydrogels with ionic and covalent cross-links. Soft Matter 8:9985–9988

    Article  CAS  Google Scholar 

  15. Gong JP (2010) Why are double network hydrogels so tough? Soft Matter 6:2583–2590

    Article  CAS  Google Scholar 

  16. Imran AB, Seki T, Takeoka Y (2010) Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance. Polym J 42:839–851

    Article  Google Scholar 

  17. Lin J, Xu S, Shi X (2009) Synthesis and properties of a novel double network nanocomposite hydrogel. Polym Advan Technol 20:645–649

    Article  CAS  Google Scholar 

  18. Nakajima T, Takedomi N, Kurokawa T (2010) A facile method for synthesizing free-shaped and tough double network hydrogels using physically crosslinked poly(vinyl alcohol) as an internal mold. Polym Chem 1:693–697

    Article  CAS  Google Scholar 

  19. Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogel with extremely mechanical strength. Adv Mater 15:1155–1158

    Article  CAS  Google Scholar 

  20. Huang Y, Zeng M, Ren J (2012) Preparation and swelling properties of graphene oxide/poly(acrylicacid-co-acrylamide) super-absorbent hydrogel nanocomposites. Coll Surf A 401:97–106

    Article  CAS  Google Scholar 

  21. Reddy KR, Lee KP, Kim JY, Lee Y (2008) Self-assembly and graft polymerization route to monodispersed Fe3O4@ SiO2—polyaniline core–shell composite nanoparticles: physical properties. J Nanosci Nanotechnol 8:5632–5639

    Article  CAS  Google Scholar 

  22. Shabanian M, Kang NJ, Wang DY, Wagenknecht U, Heinrich G (2013) Synthesis, characterization and properties of novel aliphatic–aromatic polyamide/functional carbon nanotube nanocomposites via in situ polymerization. RSC Adv 3:20738–20745

    Article  CAS  Google Scholar 

  23. Reddy KR, Sin BC, Ryu KS, Kim JC, Chung H, Lee Y (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Met 159:595–603

    Article  CAS  Google Scholar 

  24. Reddy KR, Hassan M, Gomes VG (2015) Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis. Appl Catal A 489:1–16

    Article  CAS  Google Scholar 

  25. Huang Y, Zeng M, Xu Q, Fan L (2013) Preparation and properties of chitosan-graft-poly (acrylic acid)/graphene oxide nanocomposite hydrogels. In: Solid state ionics: ionics for sustainable world-proceedings of the 13th Asian Conference. World Scientific, pp 375–385

  26. Yue YF, Haque MA, Kurokawa T, Nakajima T, Gong JP (2013) Lamellar hydrogels with high toughness and ternary tunable photonic stop-band. Adv Mater 325:3106–3110

    Article  Google Scholar 

  27. Sun TL, Kurokawa T, Kuroda S, Ihsan AB, Akasaki T, Sato K, Haque MA, Nakajima T, Gong JP (2013) Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 12:932–937

    Article  CAS  Google Scholar 

  28. Yin H, Akasaki T, Sun TL, Nakajima T, Kurokawa T, Nonoyama T, Taira T, Saruwatari Y, Gong JP (2013) Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. J Mater Chem B 1:3685–3693

    Article  CAS  Google Scholar 

  29. Tanaka Y, Kuwabara R, Na YH (2005) Determination of fracture energy of high strength double network hydrogels. J Phys Chem B 109:11559–11562

    Article  CAS  Google Scholar 

  30. Liang S, Hu J, Wu ZL (2012) Toughness enhancement and stick-slip tearing of double-network hydrogels in poly(ethylene glycol) solution. Macromolecules 45:4758–4763

    Article  CAS  Google Scholar 

  31. Nakayama A, Kakugo A, Gong JP (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128

    Article  CAS  Google Scholar 

  32. Tanabe Y, Yasuda K, Azuma C (2008) Biological responses of novel high-toughness double network hydrogels in muscle and the subcutaneous tissues. J Mater Sci Mater Med 19:1379–1387

    Article  CAS  Google Scholar 

  33. Nagaoka N, Kubota H, Safranj A (1993) Synthesis of poly(N-isopropylacrylamide) hydrogel by radiation polymerization and crosslinking. Macromolecules 26:7386–7388

    Article  CAS  Google Scholar 

  34. Zhang YP, Lee SH, Reddy KR, Gopalan AI, Lee KP (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly (3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750

    Article  CAS  Google Scholar 

  35. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4, 4′-{1, 4-phenylenebis [methylylidenenitrilo]} diphenol. Polym Bull 60:609–616

    Article  CAS  Google Scholar 

  36. Lee YR, Kim SC, Lee HI, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19:66–71

    Article  CAS  Google Scholar 

  37. Ishida H, Allen DJ (1996) Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 37:4487–4495

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank the SRF for ROCS, State Education Ministry, PR China, the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (Contract Grant No. CUGL090223), Hubei Provincial Department of Education (XD2010037), Opening Project of Teaching Laboratory of China University of Geosciences (Wuhan), and the grant of the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University) (KF201106) and Engineering Research Center of Nano-Geomaterials of Ministry of Education (CUG). This work is partially supported by National High-Tech R&D Program (863 program) for the 12th Five-Year Plan, Ministry of Science and Technology, PR China (SQ2010AA1000690005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Feng, Z., Huang, Y. et al. Chemical structure and remarkably enhanced mechanical properties of chitosan-graft-poly(acrylic acid)/polyacrylamide double-network hydrogels. Polym. Bull. 74, 55–74 (2017). https://doi.org/10.1007/s00289-016-1697-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1697-0

Keywords

Navigation