Skip to main content
Log in

Synthesis and photovoltaic properties of benzimidazole-based copolymer with fluorine atom

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new accepter unit, 5,6-difluoro-2,2-dimethyl-2H-benzo[d]imidazole, was prepared and utilized for the synthesis of the conjugated polymers containing electron donor–acceptor pair for OPVs. Difluoro-dimethyl-2H-benzoimidazole unit was designed to introduce electron-withdrawing F atom in dimethyl-2H-benzimidazole unit to improve deeper HOMO and higher V OC of the polymer. New semiconducting copolymer with dioctyloxybenzodithiophene, as the electron-rich unit, and difluoro-dimethyl-2H-benzoimidazole, as the electron-deficient unit, was synthesized by Stille polymerization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem 19:5442–5451

    Article  CAS  Google Scholar 

  2. Song S, Jin Y, Park SH, Cho S, Kim I, Lee K, Heeger AJ, Suh H (2010) A low-bandgap alternating copolymer containing the dimethyl-2H-benzimidazole moiety. J Mater Chem 20:6517–6523

    Article  CAS  Google Scholar 

  3. Song S, Park SH, Jin Y, Park J, Shim JY, Kim I, Lee H, Lee K, Suh H (2010) Synthesis and characterization of low-bandgap copolymers based on dihexyl-2H-benzimidazole and cyclopentadithiophene. J Polym Sci Polym Chem 48:4567–4573

    Article  CAS  Google Scholar 

  4. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat Photonics 3:297–302

    Article  CAS  Google Scholar 

  5. Scharber MC, Muhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater 18:789–794

    Article  CAS  Google Scholar 

  6. Li Y, Yao K, Yip HL, Ding FZ, Xu YX, Li X, Chen Y, Jen AKY (2014) Eleven-membered fused-ring low band-gap polymer with enhanced charge carrier mobility and photovoltaic performance. Adv Funct Mater 24(23):3631–3638

    Article  CAS  Google Scholar 

  7. Huo L, Guo X, Zhang S, Li Y, Hou J (2011) PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules 44:4035–4037

    Article  CAS  Google Scholar 

  8. Pan H, Li Y, Wu Y, Liu P, Ong BS, Zhu S, Xu G (2006) Synthesis and thin-film transistor performance of poly(4,8-didodecylbenzo[1,2-b:4,5-b′]dithiophene). Chem Mater 18:3237–3241

    Article  CAS  Google Scholar 

  9. Pan H, Wu Y, Li Y, Liu P, Ong BS, Zhu S, Xu G (2007) Benzodithiophene copolymer-a low-temperature, solution-processed high-performance semiconductor for thin-film transistors. Adv Funct Mater 17:3574–3579

    Article  CAS  Google Scholar 

  10. Iyer A, Bjorgaard J, Anderson T, Köse ME (2012) Quinoxaline-based semiconducting polymers: effect of fluorination on the photophysical, thermal, and charge transport properties. Macromolecules 16:6380–6389

    Article  Google Scholar 

  11. Chen HC, Chen YH, Liu CC, Chien YC, Chou SW, Chou PT (2012) Prominent short-circuit currents of fluorinated quinoxaline-based copolymer solar cells with a power conversion efficiency of 8.0%. Chem Mate 24(24):4766–4772

    Article  CAS  Google Scholar 

  12. Song S, Choi HI, Shin IS, Suh H, Hyun MH, Lee GD, Park SS, Park SH, Jin Y (2014) Synthesis and photovoltaic properties of quinoxaline-based semiconducting polymers with fluoro atoms. Bull Korean Chem Soc 35(8):2245–2250

    Article  CAS  Google Scholar 

  13. Dang D, Chen W, Yang R, Zhu W, Mammod W, Wang E (2013) Fluorine substitution enhanced photovoltaic performance of a D-A1–D–A2 copolymer. Chem Commun 49:9335–9337

    Article  CAS  Google Scholar 

  14. Song S, Ko SJ, Kim JA, Jin Y, Kim I, Kim JY, Suh H (2013) Synthesis of a conjugated copolymer with benzodithiophene and benzimidazole units. Polym J 45(5):555–559

    Article  CAS  Google Scholar 

  15. Cho S, Seo JH, Kim SH, Song S, Jin Y, Lee K, Suh H, Heeger AJ (2008) Effect of substituted side chain on donor-acceptor conjugated copolymers. Appl Phys Lett 93:263301–263301-3

    Article  Google Scholar 

  16. Song S, Ko SJ, Kim JA, Jin Y, Kim I, Kim JY, Suh H (2013) Synthesis of a conjugated copolymer with benzodithiophene and benzimidazole units. Polym J 45(5):555–559

    Article  CAS  Google Scholar 

  17. Price SC, Stuart AC, Yang L, Zhou H, You W (2011) Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer–fullerene solar cells. J Am Chem Soc 133(12):4625–4631

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Research Grant of Pukyong National University (2016 year).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Young Kim or Youngeup Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Kim, T., Kang, D. et al. Synthesis and photovoltaic properties of benzimidazole-based copolymer with fluorine atom. Polym. Bull. 73, 2511–2519 (2016). https://doi.org/10.1007/s00289-016-1679-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1679-2

Keywords

Navigation