Advertisement

Polymer Bulletin

, Volume 73, Issue 9, pp 2457–2462 | Cite as

Spectroscopic study of P3HT:PCBM deposited by electrospray deposition

  • Asuki Toda
  • Kazuya Takahira
  • Katsumi Suzuki
  • Takeshi Fukuda
  • Miru Hirahara
  • Norihiko Kamata
  • Zentaro Honda
Original Paper

Abstract

We investigated a molecular order of poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester thin film by judging from the Raman spectrum, and a crystallinity parameter was estimated as the molecular order of poly(3-hexylthiophene-2,5-diyl). The crystallinity parameter of spin-coated sample increased with increasing annealing temperature, and this result relates to the photoconversion efficiency of photovoltaic cell. This means that the high photoconversion efficiency can be obtained due to the high crystallinity parameter of poly(3-hexylthiophene-2,5-diyl), and this result is reasonable compared to the previous researches. In addition, the crystallinity parameter of electrosprayed thin film increased with increasing applied voltage, corresponding to the supply speed of solution. Since the droplet size increased with increasing supply speed, the evaporation speed of solvent (o-dichlorobenzene) became slow at the high applied voltage. Therefore, the slow evaporation speed of solvent caused the molecular order in the active layer. As a result, the maximum of approximately of 95 % was achieved even though the sample was not thermally annealed, and this value corresponds to the thermal annealing at 100 °C.

Keywords

Electrospray deposition Raman spectroscopy Organic photovoltaic cell Crystallinity 

Notes

Acknowledgments

The authors gratefully acknowledge the support by the JSPS KAKENHI Project (No. 26420267).

References

  1. 1.
    Etxebarria I, Ajuria J, Pacios R (2015) Solution-processable polymeric solar cells: a review on materials, strategies and cell architectures to overcome 10 %. Org Electron 19:34–60CrossRefGoogle Scholar
  2. 2.
    Vohra V, Kawashima K, Kakara T, Koganezawa T, Osaka I, Takimiya K, Murata H (2015) Efficient inverted polymer solar cells employing favourable molecular orientation. Nat Photonics 9:403–408CrossRefGoogle Scholar
  3. 3.
    Kim J-S, Chung W-S, Kim K, Kim DY, Paeng K-J, Jo SM, Jang S-Y (2010) performance optimization of polymer solar cells using electrostatically sprayed photoactive layers. Adv Funct Mater 20:3538–3546CrossRefGoogle Scholar
  4. 4.
    Zhao X-Y, Yang W, Li C, Wang X, Lim SL, Qi D, Wang R, Gao Z-Q, Mi B-X, Chen Z-K, Huang W (2015) Effect of Danköler number of evaporation on the morphology of active layer and the performance of organic heterojunction solar cells fabricated by electrospray method. Sol Energy Mater Sol Cells 134:140–147CrossRefGoogle Scholar
  5. 5.
    Ali M, Abbas M, Shah SK, Tuerhong R, Generosi A, Paci B, Hirsch L, Gunnella R (2012) Realization of solution processed multi-layer bulk heterojunction organic solar cells by electro-spray deposition. Org Electron 13:2130–2137CrossRefGoogle Scholar
  6. 6.
    Koishikawa Y, Miyazaki H, Yahiro M, Adachi C (2013) Multi-layered organic light-emitting diode fabrication using low molecular weight materials by electrospray method. Thin Solid Films 545:527–532CrossRefGoogle Scholar
  7. 7.
    Ju J, Yamagata Y, Higuchi T (2009) Thin-film fabrication method for organic light-emitting diodes using electrospray deposition. Adv Mater 21:4343–4347CrossRefGoogle Scholar
  8. 8.
    Pitsalidis C, Pappa A-M, Hunter S, Payne MM, Anthony JE, Anthopoulos TD, Logothetidis S (2015) Electrospray-processed soluble acenes toward the realization of high-performance field-effect transistors. ACS Appl Mater Interfaces 7:6496–6504CrossRefGoogle Scholar
  9. 9.
    Yamauchi H, Sakai M, Kuniyoshi S, Kudo K (2014) Fabrication of n- and p-channel step-edge vertical-channel transistors by electrospray deposition. Jpn J Appl Phys 53:01AB16–01AB17CrossRefGoogle Scholar
  10. 10.
    Ali M, Abbas M, Shah SK, Bontempi E, Colombi P, Cicco AD, Gunnella R (2011) Variability of physical characteristics of electro-sprayed poly(3-hexylthiophene) thin films. J Appl Phys 110:054515-1–054515-9Google Scholar
  11. 11.
    Liao Y, Fukuda T, Kamata N (2014) Effect of solvent evaporation on the self-assembly of poly(3-hexylthiophene-2,5-diyl) and on the film morphology during electrospray deposition. Phys Status Sol Rap Res Lett 8:154–157CrossRefGoogle Scholar
  12. 12.
    Tsoi WC, James DT, Kim JS, Nicholson PG, Murphradley DDC, Nelson J, Kim J-S (2011) The nature of in-plane skeleton Raman modes of P3HT and their correlation to the degree of molecular order in P3HT:PCBM blend thin films. J Am Chem Soc 133:9834–9843CrossRefGoogle Scholar
  13. 13.
    Liao Y, Fukuda T, Takagi K, Kamata N, Fukuda F, Furukawa Y (2014) High crystallinity parameter poly(3-hexylthiophene-2,5-diyl) thin film fabricated by electrospray deposition method. Thin Solid Films 554:132–136CrossRefGoogle Scholar
  14. 14.
    Fukuda T, Takagi K, Asano T, Honda Z, Kamata N, Shirai H, Ju J, Yamagata Y, Tajima Y (2012) Improved power conversion efficiency of organic photovoltaic cell fabricated by electrospray deposition method by mixing different solvents. Jpn J Appl Phys 51:02BK12-1–02BK12-5CrossRefGoogle Scholar
  15. 15.
    Burgués-Ceballos I, Campoy-Quiles M, Francesch L (2012) Fast annealing and patterning of polymer solar cells by means of vapor printing. J Polym Sci B: Polym Phys 50:1245–1252CrossRefGoogle Scholar
  16. 16.
    Razzell-Hollis J, Tsoi WC, Kim J-S (2013) Directly probing the molecular order of conjugated polymer in OPV blends induced by different film thicknesses, substrates and additives. J Mater Chem C 1:6235–6243CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Asuki Toda
    • 1
  • Kazuya Takahira
    • 1
  • Katsumi Suzuki
    • 1
  • Takeshi Fukuda
    • 1
  • Miru Hirahara
    • 1
  • Norihiko Kamata
    • 1
  • Zentaro Honda
    • 1
  1. 1.Department of Functional Materials ScienceSaitama UniversitySaitamaJapan

Personalised recommendations