Polymer Bulletin

, Volume 73, Issue 12, pp 3421–3435

Contrasting relationship between macro- and microviscosity of the gelatin- and starch-based suspensions and gels

  • Dmitry V. Gulnov
  • Elena V. Nemtseva
  • Valentina A. Kratasyuk
Original Paper

Abstract

The problem of correlation between rheological properties in macro- and micro- scales of media with biopolymers of polypeptide (gelatin) and polysaccharide (starch) nature is investigated. The viscosity of the biopolymer solutions with concentrations 0.5–5 wt% was estimated by standard rotational rheometry technique and with fluorescent molecular rotor at 15–50 °C. Opposite trends were observed for relationship between microviscosity ηm and macroviscosity η for two biopolymers: ηm << η for gelatin and ηm >> η for starch solutions. The temperature dependence of ηm followed the monoexponential decay law in all samples over the whole temperature range indicating insensitivity of microviscosity to gel mesh melting under heating. The dissimilarity of macro- and micro-rheological properties of gelatin and starch-containing media is discussed in terms of difference in architecture of the gels.

Keywords

Biopolymer Gelatin Starch Physical gel Microviscosity Molecular rotor 

References

  1. 1.
    Brena BM, Batista-Viera F (2006) Immobilization of enzymes. a literature survey. In: Guissan JM (ed) Immobilization of enzymes and cells, 2nd edn. Humana press, Tottowa, pp 15–30CrossRefGoogle Scholar
  2. 2.
    Kratasyuk VA, Esimbekova EN (2003) Polymer immobilized bioluminescent systems for biosensors and bioinvestigations. In: Arshady R (ed) Introduction to polymeric biomaterials, the PBM series, vol 1. Citus Books, London, pp 301–343Google Scholar
  3. 3.
    Esimbekova E, Kratasyuk V, Shimomura O (2014) Application of enzyme bioluminescence in ecology. Adv Biochem Eng Biotechnol 144:67–109Google Scholar
  4. 4.
    Bezrukikh A, Esimbekova E, Nemtseva E, Kratasyuk V, Shimomura O (2014) Gelatin and starch as stabilizers for the coupled enzyme system of luminous bacteria NADH: FMN–oxidoreductase–luciferase. Anal Bioanal Chem 406:5743–5747CrossRefGoogle Scholar
  5. 5.
    Esimbekova EN, Kratasyuk VA, Torgashina IG (2007) Disk-shaped immobilized multicomponent reagent for bioluminescent analyses: correlation between activity and composition. Enzyme Microb Technol 40:343–346CrossRefGoogle Scholar
  6. 6.
    Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118CrossRefGoogle Scholar
  7. 7.
    Khair AS, Brady JF (2008) “Microviscoelasticity” of colloidal dispersions. J Rheol 49:1449–1481CrossRefGoogle Scholar
  8. 8.
    Picout DR, Ross-Murphy SB (2003) Rheology of biopolymer solutions and gels. Sci World J 3:105–121CrossRefGoogle Scholar
  9. 9.
    Puchkov EO (2014) Intracellular viscosity: methods of measurements and role in metabolism. Biol Membrany 31:3–13. doi:10.1134/S1990747813050140 Google Scholar
  10. 10.
    Loutfy RO (1986) Fluorescence probes for polymer free-volume. Pure Appl Chem 58:1239–1248CrossRefGoogle Scholar
  11. 11.
    Iwaki T, Torigoe C, Noji M, Nakanishi M (1993) Antibodies for fluorescent molecular rotors. Biochemistry 32:7589–7592CrossRefGoogle Scholar
  12. 12.
    Kung CE, Reed JK (1989) Fluorescent molecular rotors: a new class of probes for tubulin structure and assembly. Biochemistry 28:6678–6686CrossRefGoogle Scholar
  13. 13.
    Sawada S, Iio T, Hayashi Y, Takahashi S (1992) Fluorescent rotors and their applications to the study of GF transformation of actin. Anal Biochem 204:110–117CrossRefGoogle Scholar
  14. 14.
    Iio T, Takahashi S, Sawada S (1993) Fluorescent molecular rotor binding to actin. J Biochem 113:196–199Google Scholar
  15. 15.
    Haidekker MA, Tsai AG, Brady T, Stevens HY, Frangos JA, Theodorakis E, Intaglietta M (2002) A novel approach to blood plasma viscosity measurement using fluorescent molecular rotors. Am J Physiol Heart Circ Physiol 282:H1609–H1614CrossRefGoogle Scholar
  16. 16.
    Haidekker MA, Grant Sh, Theodorakis E, Intaglietta M, Frangos JA (2011) Supported molecular biofluid viscosity sensors for in vitro and in vivo use. US Patent 7,943,390, May 17, 2011Google Scholar
  17. 17.
    Kuimova MK, Botchway SW, Parker AW, Balaz M, Collins HA, Harry L, Anderson HA, Suhling K, Ogilby PR (2009) Imaging intracellular viscosity of a single cell during photoinduced cell death. Nat Chem 1:69–73CrossRefGoogle Scholar
  18. 18.
    Cheng NS (2008) Formula for the viscosity of a glycerol–water mixture. Ind Eng Che Res 47:3285–3288CrossRefGoogle Scholar
  19. 19.
    Lakowicz JR (2006) Instrumentation for fluorescence spectroscopy. In: Lakowicz JR (ed) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York, pp 27–62CrossRefGoogle Scholar
  20. 20.
    Michon C, Cuvelier G, Launay B (1993) Concentration dependence of the critical viscoelastic properties of gelatin at the gel point. Rheol Acta 32:94–103CrossRefGoogle Scholar
  21. 21.
    Carrillo-Navas H, Hernández-Jaimes C, Utrilla-Coello RG, Meraz M, Vernon-Carter EJ, Alvarez-Ramirez J (2014) Viscoelastic relaxation spectra of some native starch gels. Food Hydrocolloid 37:25–33CrossRefGoogle Scholar
  22. 22.
    Ai Y, Jane J (2015) Gelatinization and rheological properties of starch. Starch Stärke 67:213–224CrossRefGoogle Scholar
  23. 23.
    Haj-Kacem RB, Ouerfelli N, Herráez JV (2015) Viscosity Arrhenius parameters correlation: extension from pure to binary fluid mixtures. Phys Chem Liquids 53:776–784CrossRefGoogle Scholar
  24. 24.
    Okada R, Tanzawa H (1965) Apparent activation energy for the viscous flow of polymer solutions. J Polym Sci A 3:4294–4296Google Scholar
  25. 25.
    Loutfy RO, Law KY (1980) Electrochemistry and spectroscopy of intramolecular charge-transfer complexes. pN, N-dialkylaminobenzylidenemalononitriles. J Phys Chem 84:2803–2808CrossRefGoogle Scholar
  26. 26.
    Haidekker MA, Brady TP, Lichlyter D, Theodorakis EA (2005) Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg Chem 33:415–425CrossRefGoogle Scholar
  27. 27.
    Först P, Werner F, Delgado A (2002) On the pressure dependence of the viscosity of aqueous sugar solutions. Rheol Acta 41:369–374CrossRefGoogle Scholar
  28. 28.
    Durand A (2007) Aqueous solutions of amphiphilic polysaccharides: concentration and temperature effect on viscosity. Eur Polym J 43:1744–1753CrossRefGoogle Scholar
  29. 29.
    Lide DR (ed) (2005) CRC handbook of chemistry and physics, internet version 2005. CRC Press, Boca Raton. http://www.hbcpnetbase.com
  30. 30.
    Hogman J, Loren N, Hermansson A-M (2010) Effect of gelatin gelation kinetics on probe diffusion determined by FRAP and rheology. Biomacromolecules 11:3359–3366CrossRefGoogle Scholar
  31. 31.
    Ross-Murphy SB (1995) Structure–property relationships in food biopolymer gels and solutions. J Rheol 39:1451–1463CrossRefGoogle Scholar
  32. 32.
    Cosgrove T, White SJ, Zarbakhsh A, Heenan RK, Howe AM, Cosgrove T et al (1995) Small-angle scattering studies of sodium dodecyl sulfate interactions with gelatin. 1. Langmuir 11:744–749CrossRefGoogle Scholar
  33. 33.
    Miao Z, Ding K, Wu T, Liu Z, Han B, An G, Miao Sh, Yang G (2008) Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Microporous Mesoporous Mater 111:104–109CrossRefGoogle Scholar
  34. 34.
    Ohtsuka A, Watanabe T, Suzuki T (1994) Gel structure and water diffusion phenomena in starch gels studied by pulsed field gradient stimulated echo NMR. Carbohydr Polym 25:95–100CrossRefGoogle Scholar
  35. 35.
    Rumble C, Rich K, He G, Maroncelli M (2012) CCVJ is not a simple rotor probe. J Phys Chem A 116:10786–10792CrossRefGoogle Scholar
  36. 36.
    Akers W, Haidekker MA (2004) A molecular rotor as viscosity sensor in aqueous colloid solutions. J Biomech Eng 126:340–345CrossRefGoogle Scholar
  37. 37.
    Ring SG (1985) Some studies on starch gelation. Starch Stärke 37:80–83CrossRefGoogle Scholar
  38. 38.
    Zema L, Loreti G, Melocchi A, Maroni A, Gazzaniga A (2012) Injection molding and its application to drug delivery. J Control Release 159:324–331CrossRefGoogle Scholar
  39. 39.
    Ling GN (2001) The polarized multilayer theory of cell water. In: Ling GN (ed) Life at the cell and below-cell level, 1st edn. Pacific Press, New York, pp 74–108Google Scholar
  40. 40.
    Feneberg W, Westphal M, Sackmann E (2001) Dictyostelium cells’ cytoplasm as an active viscoplastic body. Eur Biophys J 30:284–294CrossRefGoogle Scholar
  41. 41.
    Chandran PL, Barocas VH (2004) Microstructural mechanics of collagen gels in confined compression: poroelasticity, viscoelasticity, and collapse. J Biomech Eng 126:152–166CrossRefGoogle Scholar
  42. 42.
    Moeendarbary E, Valon L, Fritzsche M, Harris AR, Moulding DA, Thrasher AJ, Stride EL, Mahadevan L, Charras GT (2013) The cytoplasm of living cells behaves as a poroelastic material. Nat Mater 12:253CrossRefGoogle Scholar
  43. 43.
    Luby-Phelps K (1999) Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area. Int Rev Cytol 192:189–221CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dmitry V. Gulnov
    • 1
  • Elena V. Nemtseva
    • 1
    • 2
  • Valentina A. Kratasyuk
    • 1
    • 2
  1. 1.Laboratory of Bioluminescent BiotechnologiesSiberian Federal UniversityKrasnoyarskRussia
  2. 2.Institute of Biophysics SB RASKrasnoyarskRussia

Personalised recommendations