Skip to main content
Log in

Surface modification of magnesium hydroxide nanoparticles with hexylphosphoric acid to improve thermal stabilities of polyethylene composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Magnesium hydroxide (MH) has been identified as an alternative flame retardant for polyethylenes (PEs), to replace halogen-based flame retardants, which cause severe environmental problems. However, the use of MH in fabricating composites with PEs is limited because a high loading ratio is required for adequate flame suppression and because the hydrophilic surfaces of microparticulate MH cause aggregation in hydrophobic, highly crystalline PEs. To overcome these issues, we modified the surfaces of MH nanoparticles using hexylphosphoric acid to obtain hydrophobic surfaces. The surface-modified MH nanoparticles enhanced the thermal stabilities of PE composites, even at a low loading ratio of below 30 wt%. It was attributed to the uniform dispersion of magnesium hydroxide nanoparticles by increased association between the hexyl moieties and short alkyl side chains in polyethylenes together with the synergetic effect of the endothermic decomposition reaction of magnesium hydroxide and radical capture by phosphorus moieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35(7):902

    Article  CAS  Google Scholar 

  2. Dasari A, Yu ZZ, Cai GP, Mai YW (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38(9):1357

    Article  CAS  Google Scholar 

  3. Bergman A (1999) In: Proceedings of international conference on halogen-free materials for electronic and electric products. Gothenburg, Sweden

  4. Wang Z, Shen X, Fan W, Hu Y, Qu B, Gui Z (2002) Effects of poly(ethylene-co-propylene) elastomer on mechanical properties and combustion behavior of flame retarded polyethylene/magnesium hydroxide composites. Polym Int 51:653

    Article  CAS  Google Scholar 

  5. Xu S, Liao MC, Zeng HY, Zhang ZQ, Liu XJ, Zhu PH (2015) Ultrafine hydrotalcite particles prepared with novel technology to improve the flame retardancy of polypropylene. Appl Clay Sci 108:215

    Article  CAS  Google Scholar 

  6. Hull TR, Witkowski A, Hollingbery L (2011) Fire retardant action of mineral fillers. Polym Degrad Stabil 96(8):1462

    Article  CAS  Google Scholar 

  7. Haurie L, Fernández AI, Velasco JI, Chimenos JM, Cuesta JML, Espiell F (2006) Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix. Polym Degrad Stabil 91(5):989

  8. Bobovitch A, Gutman E, Schenker M, Utevski L, Muskatel M (1995) New approach to flame retardants: thermal polymerization on fillers. Mater Lett 23(4–6):317

    Article  CAS  Google Scholar 

  9. Liu J, Zhang Y (2011) Effect of ethylene-acrylic acid copolymer on flame retardancy and properties of LLDPE/EAA/MH composites. Polym Degrad Stabil 96(12):2215

    Article  CAS  Google Scholar 

  10. Quanlin Z, Zhijun J, Xiaogang L, Zhengfang Y (2010) Effect of Al(OH)3 particle fraction on mechanical properties of particles of particles-reinforced composites using unsaturated polyester as matrix. J Fail Anal Prev 10:515

    Article  Google Scholar 

  11. Liu B, Zhang Y, Wan C, Zhang Y, Li R, Liu G (2007) Thermal stability, flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrated whisker. Polym Bull 58:747

    Article  CAS  Google Scholar 

  12. Hornsby PR, Watson CL (1990) A study of mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polym Degrad Stabil 30:73

    Article  CAS  Google Scholar 

  13. Liang JZ, Zhang YJ, Jian XH (2011) Heat resistant properties of PP/Al(OH)3/Mg(OH)2 flamed retardant composites. Polym Bull 66:289

    Article  CAS  Google Scholar 

  14. Gui H, Zhang X, Dong W, Wang Q, Gao J, Song Z, Lai J, Liu Y, Huang F, Qiao J (2007) Flame retardant synergism of rubber and Mg(OH)2 in EVA composites. Polymer 48(9):25371

    Article  Google Scholar 

  15. Liu H, Fang Z, Peng M, Shen L, Wang Y (2009) The effects of irradiation cross-linking on the thermal degradation and flame-retardant properties of the HDPE/EVA/magnesium hydroxide composites. Radiat Phys Chem 78(11):922

    Article  CAS  Google Scholar 

  16. Yeh JT, Yang HM, Huang SS (1996) Combustion of polyethylene filled with metallic hydroxides and crosslinkable polyethylene. Polym Degrad Stabil 50:229

    Article  Google Scholar 

  17. Bahattab MA, Mosnacek J, Basfa AA, Shukri TM (2010) Cross-linked poly(ethylene vinyl acetate) (EVA)/low density polyethylene (LDPE)/metal hydroxides composites for wire and cable applications. Polym Bull 64:569

    Article  CAS  Google Scholar 

  18. Liauw CM, Lees GC, Hurts SJ, Rothon RN, Ali S (1998) Effect of silane-based filler surface treatment formulation on the interfacial properties of impact modified polypropylene/magnesium hydroxide composites. Compos Part A Appl S 29:1313

    Article  Google Scholar 

  19. Zhang F, Zhang H, Su Z (2007) Surface treatment of magnesium hydroxide to improve its dispersion in organic phase by the ultrasonic technique. Appl Surf Sci 253:7393

    Article  CAS  Google Scholar 

  20. Yan H, Wei J, Yin B, Yang M (2015) Effect of the surface modification of ammonium polyphosphate of the structure and property of melamine-formaldehyde resin microencapsulated ammonium polyphosphate and polypropylene flame retardant composite. Polym Bull. doi:10.1007/s00289-015-1432-2

    Google Scholar 

  21. Genovese A, Shanks RA (2007) Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate. Polym Degrad Stabil 92:2

    Article  CAS  Google Scholar 

  22. Fu M, Qu B (2004) Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends. Polym Degrad Stabil 85:633

    Article  CAS  Google Scholar 

  23. Fontaine G, Bourbigot S, Duquesne S (2008) Neutralized flame retardant phosphorus agent: facile synthesis, reaction to fire in PP and synergy with zinc borate. Polym Degrad Stabil 93:68

    Article  CAS  Google Scholar 

  24. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low band-gap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497

    Article  CAS  Google Scholar 

  25. Yoon J, Kwag J, Shin TJ, Park J, Lee YM, Lee Y, Park J, Heo J, Joo C, Park TJ, Yoo PJ, Kim S, Park J (2014) Nanoparticles of conjugated polymers prepared from phase-separated films of phospholipids and polymers for biomedical applications. Adv Mater 26:4559

    Article  CAS  Google Scholar 

  26. Seo D, Park J, Shin TJ, Yoo PJ, Park J, Kwak K (2015) Bathochromic shift in absorption spectra of conjugated polymer nanoparticles with displacement along backbones. Macromol Res 23:574

    Article  CAS  Google Scholar 

  27. Hoang DQ, Kim J (2012) Flame retardation performances of novel aryl cyclic phosphorus flame retardants when applied to highly flammable polymers. Macromol Res 21:184

    Article  Google Scholar 

  28. Nguyen C, Kim J (2008) Synthesis of a novel nitrogen-phosphorus flame retardant based on phosphoramidate and its application to PC, PBT, EVA and ABS. Macromol Res 16:620

    Article  CAS  Google Scholar 

  29. Nelson AK, Toy ADF (1963) The preparation of long-chain monoalkyl phosphates from pyrophosphoric acid and alcohols. Inorg Chem 2:775

    Article  CAS  Google Scholar 

  30. An D, Wang L, Zheng Y, Guan S, Gao X, Tian Y, Zhang H, Wang Z, Liu Y (2009) In situ preparation and surface modification of magnesium hydroxide nanoparticles. Colloid Surf A 348(1–3):9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Chung-Ang University Graduate Research Scholarship in 2015 and by grants from the Korea Research Foundation (Grant Nos. 2013R1A1A2058816, 2014M2B2A4031389, and 2014R1A1A3049867), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhyun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, J., Kang, I., Choi, J. et al. Surface modification of magnesium hydroxide nanoparticles with hexylphosphoric acid to improve thermal stabilities of polyethylene composites. Polym. Bull. 73, 2855–2866 (2016). https://doi.org/10.1007/s00289-016-1628-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1628-0

Keywords

Navigation