Skip to main content
Log in

Structural, morphological, thermal and mechanical characterization of cellulose acetate–poly (acrylonitrile) semi interpenetrating polymer network (IPN) membranes and study of their swelling behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present study native cellulose acetate (CA) gel and the semi IPNs of cellulose acetate and polyacrylonitrile (CA-PAN) crosslinked with N,N′-methylene–bisacrylamide (MBA) were synthesized by redox polymerization method. The concentration of acrylonitrile (AN) was varied in the feed mixture to analyze the mechanical, structural and morphological changes in the resulting semi IPNs and compared with the native CA gel. The observed changes were investigated using Fourier Transform Infrared Microscopy (FTIR), Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) and Thermo Gravimetric Analysis (TGA) techniques. The crosslinking of acrylonitrile (AN) in the cellulose acetate matrix by MBA to form semi IPNs was structurally analyzed by FTIR spectroscopy. By SEM and AFM analysis, it was observed that acrylonitrile played a significant role in controlling the morphological parameters like surface skewness, kurtosis and redundance of the prepared semi IPNs. X-Ray diffraction and thermo gravimetric analysis suggested an enhancement in crystallinity and thermal stability of the CA-PAN semi IPNs. Moreover, the effect of reaction variables on percent porosity and swelling ratio was investigated and optimized by adjusting the concentrations of polymer, monomer and crosslinking agent. The prepared semi IPNs were also studied for microhardness property and thus novel CA-PAN semi IPNs were synthesized with excellent mechanical, morphological, thermal and swelling properties that make them potential materials for many pharmaceutical and industrial applications in comparison to native CA gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kamal H, Abd-Elrahim FM et al (2014) Characterization and some properties of cellulose acetate-co-polyethylene oxide blends prepared by the use of gamma irradiation. J Radiate Res Appl sci 7:146–153

    Article  CAS  Google Scholar 

  2. Rodrigues F, Castillo MM et al (2009) Preparation, characterization, and adsorption properties of cellulose acetate-polyaniline membranes J Appl Polym Sci 111:1216–1224

  3. Lohani A, Singh G et al (2014) Interpenetrating polymer networks as innovative drug delivery systems. Drug Deliv 2014:1–11

    Article  Google Scholar 

  4. Liptov YS, Karabanova LV (1995) Gradient interpenetrating polymer networks. J Mater Sci 30:1095–1104

    Article  Google Scholar 

  5. Mercy TM, Brahmaiah B et al (2013) Interpenetrating polymer network (IPN) microparticles an advancement in novel drug delivery system: a review. IJPRBS 2:215–224

    Google Scholar 

  6. Ohura T, Tsutaki Y et al (2014) Novel synthesis of cellulose-based diblock copolymer of poly (hydroxyethyl methacrylate) by mechanochemical reaction. Sci World J. 2014:1–4

    Article  Google Scholar 

  7. Hassanien AM, El-Hashash MA et al (2013) Fabrication of polyvinyl alcohol/cellulose acetate (PVA/CA/PEG) antibacterial membrane for potential water purification application. Hydrol Curr Res 4:1–6

    Google Scholar 

  8. Peppas NA, Hilt JZ et al (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1645

    Article  Google Scholar 

  9. Kalaivizhi R, Nanjundan S et al (2015) Ultrafiltration application of cellulose acetate and aminated polyethersulfone blend membranes. IJIRSET 4:61–66

    Google Scholar 

  10. FichetO Vidal F et al (2005) Polydimethylsiloxane–cellulose acetate butyrate interpenetrating polymer networks synthesis and kinetic study. Part I. Polymer 46:37–47

    Article  Google Scholar 

  11. Billy M, Da Ranzani, Costa A et al (2010) Cellulose acetate graft copolymers with nano structured architectures: synthesis and characterization. Eur Polym J 46:944–957

    Article  CAS  Google Scholar 

  12. Combe C, Molis E et al (1999) The effect of CA membrane properties on adsorptive fouling by humic acid. J Membr Sci 154:73–87

    Article  CAS  Google Scholar 

  13. Sadeghi M, Hosseinzadeh H (2008) Synthesis and swelling behavior of starch-poly(sodium acrylate-co-acrylamide) superabsorbent hydrogel. Turk J Chem 32:375–388

    CAS  Google Scholar 

  14. Korobeinyk AV, Whitby RLD et al (2012) High temperature oxidative resistance of polyacrylonitrile-methylmethacrylate copolymer powder converting to a carbonizd monolith. Eur Polym J 48:37–104

    Article  Google Scholar 

  15. Arthanareeswaran G, Thanikaivelan P et al (2004) Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. Eur Polym J 40:2153–2159

    Article  CAS  Google Scholar 

  16. Bai H, Zhou Y et al (2012) The permeability and mechanical properties of cellulose acetate membranes blended with polyethylene glycol 600 for treatment municipal sewage. Proc Environ Sci 16:346–351

    Article  CAS  Google Scholar 

  17. Deshpande DS, Bajpai R et al (2011) Synthesis and characterization of acrylonitrile incorporated pva based semi-inter penetrating polymeric networks. IJCR 3:74–82

    CAS  Google Scholar 

  18. Rajvaidya S, Bajpai R et al (2005) Morphological, thermal and annealed microhardness characterization of gelatin based interpenetrating networks of polyacrylonitrile: a hard biopolymer. Bull Mater Sci 28:529–534

    Article  CAS  Google Scholar 

  19. Zhang LP, Chen GW et al (2009) Preparation and characterization of composite membranes of polysulfone and microcrystalline cellulose. J Appl Polym Sci 112:550–556

    Article  CAS  Google Scholar 

  20. Bajaj P, Paliwal DK et al (1993) Acrylonitrile-acrylic acids copolymers I: synthesis and characterization. J Appl Polym Sci 49:823–833

    Article  CAS  Google Scholar 

  21. Spagnol C, Rodrigues FA et al (2012) Nanocomposites based on poly(acrylamide- coacrylate) and cellulose nanowhiskers. Eur Polym J 48:454–463

    Article  CAS  Google Scholar 

  22. Biswal DR, Singh RP (2004) Characterization of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57:379–387

    Article  CAS  Google Scholar 

  23. Saufi MS, Ismail FA (2002) Development and characterization of polyacrylonitrile (PAN) based carbon hollow fiber membrane. SJST 24:843–854

    CAS  Google Scholar 

  24. Sudha PN, Vinodhini PA et al (2014) Fabrication of cellulose acetate-chitosan-Polyethylene glycol ultrafiltration membrane for chromium removal. Der Pharm Lett 6:37–46

    CAS  Google Scholar 

  25. Kwak SY, Kim SH (2001) Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) Membrane. Environ Sci Technol 35:2388–2394

    Article  CAS  Google Scholar 

  26. Velu S, Rambabu K et al (2014) Characterization and application studies of cellulose acetate-activated carbon blend ultra filtration membranes. IJCRGG 6:565–577

    CAS  Google Scholar 

  27. Raposo M, Ferreira Q et al. (2007) A guide for atomic force microscopy analysis of soft-condensed matter. Mod Res Educ Topics Microsc. FORMATEX 2:758–769

    Google Scholar 

  28. Joanes DN, Gill CA (1998) Comparing measures of sample skewness and kurtosis. J R Stat Soc 47:183–189

    Article  Google Scholar 

  29. Lucena MCC, Alencar AEV et al (2003) The effect of additives on the thermal degradation of cellulose acetate. Polym Degrad Stab 80:149–155

    Article  CAS  Google Scholar 

  30. Qunhui G, Ohya H et al (1995) Investigation of the permselectivity of chitosan membrane used in pervaporation separation II. Influences of temperature and membrane thickness. J Membr Sci 98:223–232

    Article  CAS  Google Scholar 

  31. Chatterjee PK (1968) Thermogravimetric analysis of cellulose. J Polym Sci 6:3217–3233

    Article  CAS  Google Scholar 

  32. Di Zhang, Karki AB et al (2009) Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer 50:4189–4198

    Article  Google Scholar 

  33. Zhou W, Jianxin H et al (2011) Studies of electrospun cellulose acetate nanofibrous membranes. TOMSJ l5:51–55

  34. Rhim JW, Yeom CK et al (1998) Modification of poly (vinyl alcohol) membranes using sulfur–succinic acid and its application to pervaporation separation of water–alcohol mixtures. J Appl Polym Sci 68:1717–1723

    Article  CAS  Google Scholar 

  35. Sadeghi M (2011) Synthesis and investigation of swelling behavior natural base superabsorbent composites with high thermal resistance. Aust J Basic Appl Sci 5:887–895

    CAS  Google Scholar 

  36. Raeber GP, Lutolf MP et al (2005) Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration. Biophys J 89:1374–1388

    Article  CAS  Google Scholar 

  37. Jain S, Bajpai AK (2012) Investigation of water sorption and blood compatible behaviors of polyethylene glycol (PEG)-plasticized membranes of poly(vinyl-G-acrylonitrile). Adv Sci Eng Med 4:469–478

    Article  CAS  Google Scholar 

  38. Sadeghi M, Hosseinzadeh H (2010) Synthesis and super-swelling behavior of a novel low salt-sensitive protein-based superabsorbent hydrogel: collagen-g-poly(AMPS). Turk J Chem 34:739–752

    CAS  Google Scholar 

  39. Gils PS, Ray D et al (2009) Designing of new acrylic based macroporous superabsorbent polymer hydrogel and its suitability for drug delivery. Int J Pharm Sci 1:43–54

    Google Scholar 

  40. Saraydın D, Karadag E et al (2004) The influence of preparation methods on the swelling and network properties of acrylamide hydrogels with crosslinkers. J Macromol Sci A41:419–431

    Article  Google Scholar 

  41. Mishra S et al (2006) Preparation and characterization of polyvinyl alcohol based biomaterial: water sorption and in vitro blood compatibility study. J Appl Polym Sci 100:2402–2408

    Article  CAS  Google Scholar 

  42. Alves NM, Saiz AC et al (2007) Microhardness of starch based biomaterials in simulated physiological conditions. Acta Biomater 3:69–76

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Bajpai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, P., Bajpai, A.K. & Bajpai, R. Structural, morphological, thermal and mechanical characterization of cellulose acetate–poly (acrylonitrile) semi interpenetrating polymer network (IPN) membranes and study of their swelling behavior. Polym. Bull. 73, 2245–2264 (2016). https://doi.org/10.1007/s00289-016-1606-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1606-6

Keywords

Navigation