Skip to main content
Log in

Synthesis and properties of CO2-responsive copolymer by the combination of reversible addition-fragmentation chain transfer polymerization and click chemistry

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Amphiphilic block copolymer of poly(ethylene glycol) and polymer containing N′-Propargyl-N,N-dimethylacetamidines (PEG-b-PADS) was easily synthesized via the combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and click chemistry. The structure of the copolymer was characterized by nuclear magnetic resonance (1H NMR) and attenuated total internal reflectance fourier transform infrared spectroscopy (ATR FT-IR). As an amphiphilic copolymer, PEG-b-PADS can self-assemble to micelles with PEG shell and PADS core in aqueous medium, and its self-assembly behavior and CO2-responsive properties were investigated by transmission electron microscopy (TEM) and dynamic light scatting (DLS). The size and morphologies of the micelles can be controlled by bubbling CO2 or Ar into the solution. Alternating treatment with CO2 and Ar could realize a reversible contraction–expansion transformation of the micelles. As a carrier for drug delivery systems, the micelles showed good controlled release behavior for drug molecules. Investigation shows that the release rate and level of doxorubicin (DOX) could be controlled through bubbling with CO2 and Ar alternatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhuang JM, Gordon MR, Ventura J, Li LY, Thayumanavan S (2013) Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev 42:7421–7435. doi:10.1039/c3cs60094g

    Article  CAS  Google Scholar 

  2. Yang H, Ma Q, Hu L, Hao JC, Tan YB (2012) Synthesis and multi-stimuli-responsive behavior of copolymer N,N′-dimethylacrylamide and complex pseudorotaxane. Polym Bull 69:199–217. doi:10.1007/s00289-012-0731-0

    Article  CAS  Google Scholar 

  3. Rabnawaz M, Liu GJ (2012) Preparation and application of a dual light-responsive triblock terpolymer. Macromolecules 45:5586–5595. doi:10.1021/ma3006476

    Article  CAS  Google Scholar 

  4. Yao KJ, Tang CB, Zhang J, Bunyard C (2013) Degradable and salt-responsive random copolymers. Polym Chem 4:528–535. doi:10.1039/c2py20626a

    Article  CAS  Google Scholar 

  5. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113. doi:10.1038/NMAT2614

    Article  Google Scholar 

  6. Feng AC, Zhan CB, Yan Q, Liu BW, Yuan JY (2014) A CO2- and temperature-switchable “Schizophrenic” block copolymer: from vesicles to micelles. Chem Commun 50:8958–8961. doi:10.1039/c4cc03156c

    Article  CAS  Google Scholar 

  7. Nagai D, Suzuki A, Maki Y, Takeno H (2011) Reversible chain association/dissociation via a CO2 responsive crosslinking/decrosslinking system. Chem Commun 47:8856–8858. doi:10.1039/c1cc12084k

    Article  CAS  Google Scholar 

  8. Ding Y, Chen SL, Xu HP, Wang ZQ, Zhang X (2010) Reversible dispersion of single-walled carbon nanotubes based on a CO2-responsive dispersant. Langmuir 26:16667–16671. doi:10.1021/la103519t

    Article  CAS  Google Scholar 

  9. Han DH, Tong X, Boissière O, Zhao Y (2011) General strategy for making CO2-switchable polymers. ACS Macro Lett 1:57–61. doi:10.1021/mz2000175

    Article  Google Scholar 

  10. Pinaud J, Kowal E, Cunningham M, Jessop P (2012) 2-(Diethyl)aminoethyl methacrylate as a CO2-switchable comonomer for the preparation of readily coagulated and redispersed polymer latexes. ACS Macro Lett 1:57–61. doi:10.1021/mz3003215

    Article  Google Scholar 

  11. Liu BW, Zhou H, Zhou ST, Zhang HJ, Feng AC, Jian CM, Hu J, Gao WP, Yuan JY (2014) Synthesis and self-assembly of CO2–temperature dual stimuli-responsive triblock copolymers. Macromolecules 47:2938–2946. doi:10.1021/ma5001404

    Article  CAS  Google Scholar 

  12. Yan Q, Zhao Y (2013) CO2-stimulated diversiform deformations of polymer assemblies. J Am Chem Soc 135:16300–16303. doi:10.1021/ja408655n

    Article  CAS  Google Scholar 

  13. Darwish TA, Evans RA, James M, Malic N, Triani G, Hanley TL (2010) CO2 triggering and controlling orthogonally multiresponsive photochromic systems. J Am Chem Soc 132:10748–10755. doi:10.1021/ja1013322

    Article  CAS  Google Scholar 

  14. Yan Q, Zhou R, Fu CK, Zhang HJ, Yin YW, Yuan JY (2011) CO2-responsive polymeric vesicles that breathe. Angew Chem Int Ed 50:4923–4927. doi:10.1002/anie.201100708

    Article  CAS  Google Scholar 

  15. Haag R (2004) Supramolecular drug-delivery systems based on polymeric core-shell architectures. Angew Chem Int Ed 43:278–282. doi:10.1002/anie.200301694

    Article  CAS  Google Scholar 

  16. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204. doi:10.1016/j.jconrel.2007.12.017

    Article  CAS  Google Scholar 

  17. Chen Y, Pang XH, Dong CM (2010) Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host–guest chemistry. Adv Funct Mater 20:579–586. doi:10.1002/adfm.200901400

    Article  CAS  Google Scholar 

  18. Lai JT, Filla D, Shea R (2002) Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents. Macromolecules 35:6754–6756. doi:10.1021/ma020362m

    Article  CAS  Google Scholar 

  19. Yuan WZ, Zou H, Guo W, Shen TX, Ren J (2013) Supramolecular micelles with dual temperature and redox responses for multi-controlled drug release. Polym Chem 4:2658–2661. doi:10.1039/c3py00211j

    Article  CAS  Google Scholar 

  20. Wan XJ, Liu T, Liu SY (2011) Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers. Biomacromolecules 12:1146–1154. doi:10.1021/bm101463d

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the financial supports the National High Technology Research and Development Program (No. 2013AA032202) and the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weizhong Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, W., Huang, W. & Zou, H. Synthesis and properties of CO2-responsive copolymer by the combination of reversible addition-fragmentation chain transfer polymerization and click chemistry. Polym. Bull. 73, 2199–2210 (2016). https://doi.org/10.1007/s00289-016-1603-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-016-1603-9

Keywords

Navigation