Skip to main content
Log in

Synthesis and properties of novel brominated chiral polyamides derived from 5-[4-(2-tetrabromophthalimidylpropanoylamino)benzoylamino]isophthalic acid and aromatic diamines

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel aromatic chiral dicarboxylic acid, 5-[4-(2-tetrabromophthalimidylpropanoylamino)benzoylamino]isophthalic acid was synthesized in three steps in high yield and purity starting from tetrabromophthalic anhydride and l-alanine. A series of new soluble, thermally stable and optically active polyamides (PA)s having pendent tetrabromophthalimide, flexible asymmetrical and benzamide groups with flame retardancy properties have been successfully prepared using triphenyl phosphite/pyridine in the presence of calcium chloride and N-methyl-2-pyrrolidone (NMP). The resulting new polymers were obtained in good yields, inherent viscosities ranging between 0.36 and 0.63 dL g−1 and were characterized with FT-IR, 1H NMR, specific rotation and thermogravimetric analysis techniques. Bulky pendent groups of the polymer chains disturb interchain and intrachain interactions and make these polymers readily soluble in various solvents, such as NMP, N,N-dimethylacetamide, dimethyl sulfoxide, and N,N-dimethylformamide. The resulting PAs were thermally stable, with 10 % weight loss recorded at 432 and 478 °C in the nitrogen atmosphere. In addition, due to existence of chiral center and optical activity of these polymers, they have potential to be utilized as chiral stationary phase in chromatography technique for the separation of racemic mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Scheme 3

Similar content being viewed by others

References

  1. Shen J, Okamoto Y (2015) Efficient separation of enantiomers using stereoregular chiral polymers. Chem Rev. doi:10.1021/acs.chemrev.5b00317

    Google Scholar 

  2. Liu P, Zhang X, Xu W, Guo C, Wang S (2012) Electrochemical sensor for the determination of brucine in human serum based on molecularly imprinted poly-o-phenylenediamine/SWNTs composite film. Sens Actuators, B 163:84–89

    Article  CAS  Google Scholar 

  3. Anger E, Iida H, Yamaguchi T, Hayashi K, Kumano D, Crassous J, Vanthuyne N, Rousselc C, Yashima E (2014) Synthesis and chiral recognition ability of helical polyacetylenes bearing helicene pendants. Polym Chem 5:4909–4914

    Article  CAS  Google Scholar 

  4. Zhang J, Shi C, Ji T, Wu G, Kou K (2014) Preparation and microwave absorbing characteristics of multi-walled carbon nanotube/chiral-polyaniline composites. Open J Polym Chem 4:62–72

    Article  Google Scholar 

  5. Ohsawa S, Sakurai SI, Nagai K, Maeda K, Kumaki J, Yashima E (2012) Amplification of macromolecular helicity of dynamic helical poly(phenylacetylene)s bearing non-racemic alanine pendants in dilute solution, liquid crystal and two-dimensional crystal. Polym J 44:42–50

    Article  CAS  Google Scholar 

  6. Ouyang QY, Chen YJ, Li CY (2012) The fabrication and enhanced nonlinear optical properties of electrostatic self-assembled film containing water-soluble chiral polymers. Mater Chem Phys 134:80–86

    Article  CAS  Google Scholar 

  7. Qiu F, Liu J, Cao G, Guan Y, Shen Q, Yang D, Guo Q (2013) Synthesis, thermo-optic properties and polymeric thermooptic switch based on novel optically active polyurethane (urea). Soft Mater 11:233–243

    Article  CAS  Google Scholar 

  8. Algieri C, Drioli E, Guzzo L, Donato L (2014) Bio-mimetic sensors based on molecularly imprinted membranes. Sensors 14:13863–13912

    Article  Google Scholar 

  9. Itsuno S, Paul DK, Salam MA, Haraguchi N (2010) Main-chain ionic chiral polymers: synthesis of optically active quaternary ammonium sulfonate polymers and their application in asymmetric catalysis. J Am Chem Soc 132:2864–2865

    Article  CAS  Google Scholar 

  10. Mallakpour S, Zadehnazari A (2011) Advances in synthetic optically active condensation polymers—a review. Express Polym Lett 5(2):142–181

    Article  CAS  Google Scholar 

  11. U.S. EPA (2012). Certain polybrominated diphenylethers; significant new use rule and test rule. 77 FR 19862

  12. Mittal V, Banerjee S, Maji S (2011) High-performance processable aromatic polyamides. Wiley, New York

    Google Scholar 

  13. Garcia JM, Garcia FC, Serna F, de la Pena JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–686

    Article  CAS  Google Scholar 

  14. More AS, Pasale SK, Wadgaonkar PP (2010) Synthesis and characterization of polyamides containing pendant pentadecyl chains. Eur Polym J 46:557–567

    Article  CAS  Google Scholar 

  15. Gooch JW (2011) Encyclopedic dictionary of polymers. Springer, Atlanta

    Book  Google Scholar 

  16. Damaceanu MD, Rusu RD, Nicolescu A, Bruma M, Rusanov AL (2011) Organosoluble asymmetric aromatic polyamides bearing pendent phenoxy groups. Polym Int 60:1248–1258

    Article  CAS  Google Scholar 

  17. Bera D, Bandyopadhyay P, Ghosh S, Banerjee S, Padmanabhan V (2015) Highly gas permeable aromatic polyamides containing adamantane substituted triphenylamine. J Membr Sci 474:20–31

    Article  CAS  Google Scholar 

  18. Mallakpour S, Rafiee Z (2011) New developments in polymer science and technology using combination of ionic liquids and microwave irradiation. Prog Polym Sci 36:1754–1765

    Article  CAS  Google Scholar 

  19. Higashi F, Yokote S, Murakawa T (2004) New polyamidation through the activation of amino groups with phenyl dichlorophosphite in pyridine. J Polym Sci, Part A: Polym Chem 42:4126–4131

    Article  CAS  Google Scholar 

  20. Higashi F in: Mijs WJ (Ed.) (1992) New methods for polymer synthesis. Plenum Press, New York, Chapter 7

  21. Van Krevelen DW, Hoftyzer PJ (1976) Properties of polymers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  22. Horrocks AR, Price D (2001) Fire retardant materials. Woodhead Publishing Ltd, Cambridge

    Book  Google Scholar 

  23. Goncalves ES, Poulsen L, Ogilby PR (2007) Mechanism of the temperature-dependent degradation of polyamide 66 films exposed to water. Polym Degrad Stab 92:1977–1985

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Rafiee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, Z., Mallakpour, S. Synthesis and properties of novel brominated chiral polyamides derived from 5-[4-(2-tetrabromophthalimidylpropanoylamino)benzoylamino]isophthalic acid and aromatic diamines. Polym. Bull. 73, 1951–1964 (2016). https://doi.org/10.1007/s00289-015-1587-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1587-x

Keywords

Navigation