Skip to main content

Advertisement

Log in

Activation energy (ΔG*), enthalpy (ΔH*), and entropy (ΔS*) of poly(ethylene glycol) using Higasi method

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The change in free energy of activation (\(\Delta G_{\tau }^{*}\)), enthalpy of activation (\(\Delta H_{\tau }^{*}\)), and entropy of activation (\(\Delta S_{\tau }^{*}\)) of poly(ethylene glycol) with average molecular mass 400 Dalton (PEG 400) in dilute solutions of benzene have estimated based on the theory of Eyring rate process. These thermodynamic parameters have been determined using most probable dielectric relaxation times (τ) at different temperatures using Higasi method. Based on the results, the behavior of the stated polymer in non-polar solvent is discussed. The obtained results are compared with those determined using Whiffen and Thompson model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mashimo S (1976) Dielectric study of chain motion of poly(p-chlorostyrene) in dilute solution. Macromolecules 9:91–97

    Article  CAS  Google Scholar 

  2. Sengwa RJ, Kour K, Choudhary R (2000) Dielectric properties of low molecular weight poly(ethylene glycols). Polyr Int 49:599–608

    Article  CAS  Google Scholar 

  3. Sengwa RJ (1998) Microwave dielectric relaxation in binary mixtures of Poly (ethylene glycols) in solutions. Polyr Int (UK) 45:202–206

    Article  CAS  Google Scholar 

  4. Subramanian SK, McKenna GB (2010) A dielectric study of Poly(vinyl acetate) using a pulse probe technique. J Therm Anal Calorim 102:477–484

    Article  Google Scholar 

  5. Sengwa RJ (2003) Microwave dielectric relaxation and molecular dynamics in binary mixtures of Poly (vinyl pyrrolidone-poly (ethylene glycol)s in non-polar solvent. Polymer Int (U.K) 52:1462–1467

    Article  CAS  Google Scholar 

  6. Danch AL (2009) Dynamics of polymeric systems: Empirical formula of temperature dependence of relaxation time. Journal of Thermal Analysis and Calorimetry 98:601–607

    Article  CAS  Google Scholar 

  7. El-naggara Y,urkyb G. (2001) Dielectric and chromatographic characterization of polyethylene glycols as stationary phases, Int J Polym Mater. 50:129–140. http://www.informaworld.com/smpp/title~db=all~content=t713647664~tab=issueslist~branches=50-v50

  8. Vasheghani B, Rajabi FH, Ahmadi MH (2003) Influence of solvent on thermodynamic parameters and stability of some multicomponent polymer complexes involving an acrylic polymer, poly (ethylene imine) and poly (vinyl pyrrolidone)”. Polym Bull 58:553–563. doi:10.1007/s00289-006-0693-1

    Article  Google Scholar 

  9. Sengwa RJ, Choudhary R (2001) Microwave dielectric relaxation and molecular dynamics in binary mixtures of poly (propylene glycol) 2000 and Poly (ethylene glycols) of varying molecular weight in dilute solution. Polym Int (U.K) 50:433–441

    Article  CAS  Google Scholar 

  10. Dutta K, Sit SK, Acharyya S (2003) Relaxation phenomena of polar non-polar liquid mixtures under low and high frequency electric field. Pramana 61:759–772

    Article  CAS  Google Scholar 

  11. Chitoku K, Higasi K (1966) Dielectric relaxation and molecular structure. iii. relaxation times of aniline derivatives in benzene and dioxane. Bull chem Soc Japan 39:2160–2168

    Article  CAS  Google Scholar 

  12. Rangra VR, Sharm DR (2004) Dielectric relaxation of binary mixtures. Indian J Pure Appl Phys 42:921–925

    CAS  Google Scholar 

  13. Heston WM, Franklin AD, Hennely EJ, Smyth CP (1950) Microwave absorption and molecular structure in liquids. V. Measurement of the dielectric constant and loss of low-loss solutions. J Am Chem Soc 72:3443–3447

    Article  CAS  Google Scholar 

  14. Eyring H (1941) Theory of rate processes. Mc Graw-Hill Book Co. Inc, New York

    Google Scholar 

  15. Roberts S, Von-Hippel A (1946) A new method for measuring dielectric constant and loss in the range of centimeter waves”. J App Phys 17:610–616

    Article  CAS  Google Scholar 

  16. Dakins TW, Works CN, Boggs PW (1944) A resonant-cavity method for measuring dielectric properties at ultrahigh frequencies. Trans AIEE (American Institute of Electrical engineers) 63:1092–1098

    Google Scholar 

  17. Dakins TW, Works CN (1947) Microwave dielectric measurements. J App Phys 18:789–796

    Article  Google Scholar 

  18. Smyth CP (1955) Dielectric behavior and structure. Mc-Graw Hill, New York

    Google Scholar 

  19. Madhu-Mohan T, Sreehari-Satry S, Murthy VRK (2010) Microwave dielectric relaxation, thermodynamic and confirmation studies of hydrogen bonded binary mixtures of propan-1-01 with methyl benzoate and ethyl benzoate. Indian J pure appl phys 48:668–675

    Google Scholar 

  20. Hosamani MT, Ayachit NH (2012) Activation energy ∆G * τ enthalpy ∆H * τ and entropy ∆S * τ of some indoles and certain of their binary mixtures”. J Therm Anal Calorim 107:1301–1306

    Article  CAS  Google Scholar 

  21. Yamaguchi N, Sato M (2009) Dipole moment of poly(ethylene oxide) in solution and its dependence on molecular weight and temperature”. Polym J 41:588–594

    Article  CAS  Google Scholar 

  22. Fattepur RH, Fattepur KH, Ayachit NH (2009) Estimation of entropy and enthalpy of a nematic liquid crystal using time domain reflectometry studies. J Therm Anal Calorim 98:601–607

    Article  Google Scholar 

  23. Sannaningannavar FM, Ayachit NH, Deshpande DK (2006) On the effect of temperature on dielectric relaxation time of some phenols and certain of their binary mixtures”. J Mol Liq 124:124–126

    Article  CAS  Google Scholar 

  24. Vasan ST, Ayachit NH, Deshpande DK (2006) On the effect of temperature on dielectric relaxation time of some benzene derivatives and certain of their binary mixtures. Phys Chem Liq 44:513–519

    Article  CAS  Google Scholar 

  25. Sannaningannavar FM (1991) “Studies of some physical properties of certain organic compounds,”Ph D Thesis In physics, Karnatak University, Dharwad, Karnataka, India

  26. Sannaningannavar FM, Navati BS, Ayachit NH (2012) Temperature dependence studies on dielectric relaxation and electric dipole moment of poly (ethylene glycol). J Macromol Sci Part B Phys. 51:393–401

    Article  CAS  Google Scholar 

  27. Sannaningannavar FM, Navati BS, Ayachit NH (2012) Thermodynamic parameters of poly(ethylene glycol) from dielectric relaxation studies. J Appl Polym Sci 126:375–379

    Article  CAS  Google Scholar 

  28. Higasi K (1966) Bull Chem Soc Japan 39:2157

    Article  CAS  Google Scholar 

  29. Higasi K, Koga Y, Nakamura MK (1971) Bull Chem Soc Japan 44:988

    Article  CAS  Google Scholar 

  30. Kumar S, Periyasamy P, Jeevanandham P (2011) Dielectric relaxation studies of binary liquid mixture of a few glycols with 1, 4-Dioxane. Int J Chem Tech Res 3:369–375

    Google Scholar 

  31. Debye P (1929) Polar molecules. Chemical Catalog Co, New York, p 90

    Google Scholar 

  32. GopalaKrishna KV (1957) A method of determining the dipole moment and relaxation time from microwave measurements. Trans Farad Soc 53:767

    Article  Google Scholar 

  33. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics - I alternating current characteristics. J Chem Phys 9:341

    Article  CAS  Google Scholar 

  34. Calderwood H, (1997) McGraw-Hill Encyclopaedia of Science and Technology, pp. 249–253 :Permittivity, McGraw-Hill

  35. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–190

    Article  CAS  Google Scholar 

  36. Sengwa RJ (2003) A comparative dielectric ethylene glycol and propylene glycol at different temperatures. J Mol Liq 108:47

    Article  CAS  Google Scholar 

  37. Whiffen DH, Thompson HW (1946) Measurements on the absorption of microwaves. Trans Farad Soc 42A:A114

    Article  Google Scholar 

  38. Sengwa RJ (2003) A comparative dielectric ethylene glycol and propylene glycol at different temperatures. J Mol Liq 108:47

    Article  CAS  Google Scholar 

  39. Pochylski M, Aliotta F, Błaszczak ZJ, Gapin J (2005) ´ Structural relaxation processes in polyethylene glycol/ccl4 solutions by brillouin scattering. J Phys Chem B 109:4181

    Article  CAS  Google Scholar 

  40. Sannaningannavar FM, Patil SN, Navati BS, Melavanki RM, Ayachit NH (2013) Studies on thermodynamic properties of pure poly(ethylene glycol)-400 in the temperature range 299–363 K using volume expansivities. Polym Bull 70:3171

    Article  CAS  Google Scholar 

  41. Sannaningannavar FM, Patil SN, Navati BS, Melavanki RM, Ayachit NH (2014) Thermodynamic parameters of dilute solutions of a polymer in benzene at varying temperatures and concentrations. J Therm Anal Calorim 115:1813

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial help from UGC, New Delhi and their respective colleges.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. H. Ayachit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sannaningannavar, F.M., Navati, B.S. & Ayachit, N.H. Activation energy (ΔG*), enthalpy (ΔH*), and entropy (ΔS*) of poly(ethylene glycol) using Higasi method. Polym. Bull. 73, 1689–1700 (2016). https://doi.org/10.1007/s00289-015-1571-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1571-5

Keywords

Navigation