Skip to main content
Log in

Fabrication of adduct filled glass fiber/epoxy resin laminate composites and their physical characteristics

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Adducts were synthesized from thiokol and epoxy resin using triethylamine as a catalyst, and their structure and molecular weights were determined. The synthesized adducts, which possessed an epoxide group on their chain as a modifier to enhance the toughness of the epoxy resin, were well dispersed in the epoxy matrix, resulting in the successful manufacture of laminate composites made from glass fiber/epoxy resin (GF/EP). The microstructure and mechanical properties, such as the tensile strength, impact resistance and mode I interlaminar fracture toughness, were investigated and compared with those of the GF/EP system. The addition of the adduct to the epoxy matrix led to an increase in both the mode I interlaminar fracture toughness and IZOD impact resistance of the GF/EP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hosur MV, Adbullah M, Jeelani S (2005) Studies on the low-velocity impact response of woven hybrid composites. Compos Struct 67:253

    Article  Google Scholar 

  2. Atas C, Sayman O (2008) An overall view on impact response of woven fabric composite plates. Compos Struct 82:336

    Article  Google Scholar 

  3. Hourston DJ, Lane JM (1992) The toughening of epoxy resins with thermoplastics: 1. Trifunctional epoxy resin-polyetherimide blends. Polymer 33:1379

    Article  CAS  Google Scholar 

  4. Vieille B, Casado VM, Bouvet C (2014) Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic- and thermosetting-composites: a comparative study. Compos Struct 110:207

    Article  Google Scholar 

  5. Wang Z, Xu C, Zhao Y, Zhao D, Wang Z, Li H (2008) Fabrication and mechanical properties of exfoliated clay–CNTs/epoxy nanocomposites. Mater Sci Eng A 490:481

    Article  Google Scholar 

  6. Chen CH, Jian JY, Yen FS (2009) Preparation and characterization of epoxy/γ-aluminum oxide nanocomposites. Compos Part A Appl Sci 40:463

    Article  Google Scholar 

  7. Dittanet P, Pearson A (2013) Effect of bimodal particle size distributions on the toughening mechanisms in silica nanoparticle filled epoxy resin. Polymer 54:1832

    Article  CAS  Google Scholar 

  8. Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos Sci Technol 65:2300

    Article  CAS  Google Scholar 

  9. Matadi R, Makradi A, Ahzi S, Sieffert JG, Etienne S, Rush D (2009) Preparation, structural characterization, and thermomechanical properties of pol(methyl methacrylate)/organoclay nanocomposites by melt intercalation. J Nanosci Nanotechnol 9:2923

    Article  CAS  Google Scholar 

  10. Goyat MS, Ray S, Ghosh PK (2011) Innovative application of ultrasonic mixing to produce homogeneously mixed nanoparticulate-epoxy composite of improved physical properties. Compos Part A 42:1421

    Article  Google Scholar 

  11. Boumbimba RM, Wang K, Bahlouli N, Ahzi S, Rémond Y, Addiego F (2012) Experimental investigation and micromechanical modeling of high strain rate compressive yield stress of a melt mixing polypropylene organoclay nanocomposites. Mech Mater 52:58

    Article  Google Scholar 

  12. Boumbimba RM, Bouquey M, Muller R, Jourdainne L, Triki B, Hébraud P (2012) Dispersion and morphology of polypropylene nanocomposites: characterization based on a compact and flexible optical sensor. Polym Test 31:800

    Article  Google Scholar 

  13. Chen C, Justice RS, Schaefer DW, Baur JW (2008) Highly dispersed nanosilica–epoxy resins with enhanced mechanical properties. Polymer 49:3805

    Article  CAS  Google Scholar 

  14. Ferreira JAM, Reis PNB, Costa JDM, Richardson MOW (2013) Fatigue behaviour of Kevlar composites with nanoclay-filled epoxy resin. J Compos Mater 47:1885

    Article  Google Scholar 

  15. Gojny FH, Wichmann MHG, Fiedler B, Bauhofer W, Schulte K (2005) Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Compos Part A 36:1525

    Article  Google Scholar 

  16. Yang Z, McElrath K, Bahr J, D’Souza NA (2012) Effect of matrix glass transition on reinforcement efficiency of epoxy-matrix composites with single walled carbon nanotubes, multi-walled carbon nanotubes, carbon nanofibers and graphite. Compos Part B 43:2079

    Article  CAS  Google Scholar 

  17. McGarry FJ (1970) Building design with fibre reinforced materials. Proc Royal Soc A 319:59

    Article  CAS  Google Scholar 

  18. Bucknall CB, Partridge IK (1983) Phase separation in epoxy resins containing polyethersulphone. Polymer 24:639

    Article  CAS  Google Scholar 

  19. Kinloch AJ, Shaw SJ, Tod DA, Hunston DL (1983) Deformation and fracture behaviour of a rubber-toughened epoxy: 1. Microstructure and fracture studies. Polymer 24:1341

    Article  CAS  Google Scholar 

  20. Yee AF, Pearson RA (1986) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 21:2462

    Article  CAS  Google Scholar 

  21. Bucknall CB, Gilbert AH (1989) Toughening tetrafunctional epoxy resins using polyetherimide. Polymer 30:213

    Article  CAS  Google Scholar 

  22. Gilbert AH, Bucknall CB (1991) Epoxy resin toughened with thermoplastic. Macromol Symp 45:289

    Article  CAS  Google Scholar 

  23. Ratna D, Banthia AK (2004) Rubber toughened epoxy. Macromol Res 12:11

    Article  CAS  Google Scholar 

  24. Bagheri R, Marouf BT, Pearson RA (2009) Rubber-toughened epoxies: a critical review. J Macromol Sci C 49:201

    CAS  Google Scholar 

  25. Unnikrishnan KP, Thachil ET (2006) Toughening of epoxy resins. Desig Monomers Polym 9:129

    Article  CAS  Google Scholar 

  26. Garg AC, Mai YW (1988) Failure mechanisms in toughened epoxy resins—a review. Compos Sci Technol 31:179

    Article  CAS  Google Scholar 

  27. Vu CM, Nguyen LT, Nguyen TV, Choi HJ (2014) Effect of additive-added epoxy on mechanical and dielectric characteristics of glass fiber reinforced epoxy composites. Polym (Korea) 38:726

    Article  CAS  Google Scholar 

  28. Lowe GB (1997) The cure chemistry of polysulfides. Int J Adhesion Adhesives 17:345

    Article  CAS  Google Scholar 

  29. Abdouss M (2011) The effect of epoxy-polysulfide copolymer curing methods on mechanical-dynamical and morphological properties. Iran J Chem Eng 30:37

    CAS  Google Scholar 

  30. Teodorescu M, Draghici C (2006) Poly(methyl methacrylate)-block-polysulfide-block-poly(methyl methacrylate) copolymers obtained by free-radical polymerization combined with oxidative coupling. Polym Bull 56:359

    Article  CAS  Google Scholar 

  31. Zhang MQ, Rong MZ (2011) Self healing polymers and polymer composites. Wiley, New York, p 134

    Book  Google Scholar 

  32. Thomas R, Ding YM, He YL, Yang L, Moldenaers P, Yang WM, Czigany T, Thomas S (2008) Miscibility, morphology, thermal, and mechanical properties of a DGEBA based epoxy resin toughened with a liquid rubber. Polymer 49:278

    Article  Google Scholar 

  33. Ramos VD, da Costa HM, Soares VLP, Nascimento RSV (2005) Modification of epoxy resin: a comparison of different types of elastomer. Polym Test 24:387

    Article  CAS  Google Scholar 

  34. Gabr MH, Elrahman MA, Okubo K, Fujii T (2010) A study on mechanical properties of bacterial cellulose/epoxy reinforced by plain woven carbon fiber modified with liquid rubber. Compos A 41:1263

    Article  Google Scholar 

  35. Wong DWY, Lin L, McGrail PT, Peijs T, Hogg PJ (2010) Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres. Compos A 41:759

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuong Manh Vu or Hyoung Jin Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, C.M., Nguyen, T.V., Nguyen, L.T. et al. Fabrication of adduct filled glass fiber/epoxy resin laminate composites and their physical characteristics. Polym. Bull. 73, 1373–1391 (2016). https://doi.org/10.1007/s00289-015-1553-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1553-7

Keywords

Navigation