Skip to main content

Preparation and characterization of CO2-responsive poly(amino acid) derivatives with guanidine group

Abstract

Polyaspartamides, which are termed to a variety of amide derivatives of poly(aspartic acid), one of the poly(amino acid)s or polypeptides, have been intensively investigated as biodegradable and biocompatible polymers with a broad range of potential biomedical applications as well as eco-friendly industrial uses. By discovering that polymers containing amidine or guanidine functionality have been shown to be reversibly responsive to carbon dioxide (CO2), we have developed two polyaspartamide systems: novel CO2-responsive hydrogel and amphiphilic polyaspartamide derivative containing l-arginine. In this work, poly(2-hydroxyethyl aspartamide) derivative was modified with l-arginine unit (PHEA-Larg), before cross-linked by hexamethylene diisocyanate in the presence of dibutyltin dilaurate catalyst to provide a hydrogel having not only good gel strength, but reversible CO2 absorption characteristics. On the other hand, amphiphilic polyaspartamide derivative containing hydrophobic long alkyl moiety (octyl) and l-arginine unit was synthesized, and the CO2-responsive solubility and molecular self-assembly behaviors of the systems were investigated. These new polyaspartamide systems have potential in several applications including CO2 capture, CO2-responsive and switchable surface, sensor, smart hydrogel for controlled drug delivery system, etc.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Domb AJ, Kost J, Wiseman DM (1997) Handbook of biodegradable polymers. Harwood Academic Publishers, Amsterdam, pp 135–159

    Google Scholar 

  2. Dumitriu S (2002) Polymeric biomaterials, 2nd edn. Marcel Dekker, New York, pp 91–121

    Google Scholar 

  3. Ballauff M, Lu Y (2007) “Smart” nanoparticles: preparation, characterization and applications. Polymer 48:1815–1823

    Article  CAS  Google Scholar 

  4. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  Google Scholar 

  5. Langer R, Peppas NA (2003) Advances in biomaterials, drug delivery, and bionanotechnology. AIChE J 49:2990–3006

    Article  CAS  Google Scholar 

  6. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1879

    Article  CAS  Google Scholar 

  7. Park JH, Lee S, Kim JH, Park K, Kim K, Kwon IC (2008) Polymeric nanomedicine for cancer therapy. Prog Polym Sci 33:113–137

    Article  Google Scholar 

  8. Rapport N (2007) Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci 32:962–990

    Article  Google Scholar 

  9. Lee ES, Gao Z, Bae YH (2008) Recent progress in tumor pH targeting nanotechnology. J Control Release 132:164–170

    Article  CAS  Google Scholar 

  10. Bae Y, Kataoka K (2009) Intelligent polymeric micelles from functional poly(ethylene glycol)–poly(amino acid) block copolymers. Adv Drug Deliv Rev 61:768–784

    Article  CAS  Google Scholar 

  11. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101–113

    Article  Google Scholar 

  12. Klaikherd A, Nagamani C, Thayumanavan S (2009) Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 131:4830–4838

    Article  CAS  Google Scholar 

  13. Wang Y, Feng Y, Wang B, Lu Z (2010) A novel thermoviscosifying water-soluble polymer: synthesis and aqueous solution properties. J Appl Polym Sci 116:3516–3524

    Article  CAS  Google Scholar 

  14. Fries K, Samanta S, Orski S, Locklin J (2008) Reversible colorimetric ion sensors based on surface-initiated polymerization of photochromic polymers. Chem Commun 47:6288–6290

    Article  Google Scholar 

  15. Ionov L, Minko S, Stamm M, Gohy JF, Jérôme R, Scholl A (2003) Reversible chemical patterning on stimuli responsive polymer film—environment responsive lithography. J Am Chem Soc 125:8302–8306

    Article  CAS  Google Scholar 

  16. Jessop PG, Heldebrant DJ, Li X, Eckert CA, Liotta CL (2005) Green chemistry: reversible nonpolar-to-polar solvent. Nature 436:1102

    Article  CAS  Google Scholar 

  17. Jessop PG, Phan L, Carrier A, Robinson S, Durr CJ, Harjani JR (2010) A solvent having switchable hydrophilicity. Green Chem 12:809–814

    Article  CAS  Google Scholar 

  18. Phan L, Jessop PG (2009) Switching the hydrophilicity of a solute. Green Chem 11:307–308

    Article  CAS  Google Scholar 

  19. Liu Y, Jessop PG, Cunningham M, Eckert CA, Liotta CL (2006) Switchable surfactants. Science 313:958–960

    Article  CAS  Google Scholar 

  20. Han D, Boissiere O, Kumar S, Tong X, Tremblay L, Zhao Y (2012) Two-way CO2-switchable triblock copolymer hydrogels. Macromolecules 45:7440–7445

    Article  CAS  Google Scholar 

  21. Reinicke S, Espeel P, Stamenović MM, Du Prez FE (2014) Synthesis of multi-functionalized hydrogels by a thiolactone-based synthetic protocol. Polym Chem 5:5461–5470

    Article  CAS  Google Scholar 

  22. Hoshino Y, Imamura K, Yue M, Inoue G, Miura Y (2012) Reversible absorption of CO2 triggered by phase transition of amine-containing micro- and nanogel particles. J Am Chem Soc 134:18177

    Article  CAS  Google Scholar 

  23. Neri P, Antoni G, Benvenuti F, Colola F, Gazzei G (1973) Synthesis of alpha beta-poly((2-hydroxyethyl)-DL-aspartamide), a new plasma expander. J Med Chem 16:893–897

    Article  CAS  Google Scholar 

  24. Wolk SK, Swift G, Paik YH, Yocom KM, Smith RL, Simon ES (1994) One- and two-dimensional nuclear magnetic resonance characterization of poly(aspartic acid) prepared by thermal polymerization of l-asparitic acid. Macromolecules 27:7613–7620

    Article  CAS  Google Scholar 

  25. Nakata T, Yoshitake M, Matsubara K, Tomida M, Kakuchi T (1998) Relationships between structure and properties of poly(aspartic acid)s. Macromolecules 31:2107–2113

    Article  Google Scholar 

  26. Andrade JD (1996) Hydrogels for medical and related application, ACS Symp Ser No 631. American Chemical Society, Washington, DC

    Google Scholar 

  27. Min SK, Kim JH (2001) Swelling behavior of biodegradable crosslinked gel based on poly(aspartic acid) and PEG-diepoxide. Korean Polym J 9:143–149

    CAS  Google Scholar 

  28. Kim JH, Lee JH, Yoon SW (2002) Preparation and swelling behavior of biodegradable superabsorbent gels based on polyaspartic acid. J Ind Eng Chem 8:138–142

    CAS  Google Scholar 

  29. Yoshimura T, Ochi Y, Fujioka R (2005) Synthesis and properties of hydrogels based on polyaspartamides with various pendants. Polym Bull 55:377–383

    Article  CAS  Google Scholar 

  30. Moon JR, Kim JH (2010) Biodegradable stimuli-responsive hydrogels based on amphiphilic polyaspartamides with tertiary amine pendent groups. Polym Int 5:630–636

    Google Scholar 

  31. Moon JR, Kim MW, Kim D, Jeong JH, Kim JH (2011) Synthesis and self-assembly behavior of novel polyaspartamide derivatives for anti-tumor drug delivery. Colloid Polym Sci 289:63–71

    Article  CAS  Google Scholar 

  32. Dietzsch M, Barz M, Schuler T, Klassen S, Schreiber M, Susewind M, Loges N, Lang M, Hellmann N, Fritz M, Fischer K, Theato P, Kuhnle A, Schmidt M, Zentel R, Tremel W (2013) PAA-PAMPS copolymers as an efficient tool to control CaCO3 scale formation. Langmuir 29:3080–3088

    Article  CAS  Google Scholar 

  33. Su X, Robert T, Mercer SM, Humphries C, Cunningham MF, Jessop PG (2013) A conventional surfactant becomes CO2-responsive in the presence of switchable water additives. Chem Eur J 19:5595–5601

    Article  CAS  Google Scholar 

  34. Neri P, Antoni G, Benvenuti F, Colola F, Gazzei G (1972) J Med Chem 16:893

    Article  Google Scholar 

  35. Greenwood R, Kendall K (1999) Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using acoustophoresis. J Eur Ceram Soc 19(4):479–488

    Article  CAS  Google Scholar 

  36. Hanaor DAH, Michelazzi M, Leonelli C, Sorrell CC (2012) The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. J Eur Ceram Soc 32(1):235–244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (#2011-0011464).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Heung Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tran, B.N., Bui, Q.T., Jeon, Y.S. et al. Preparation and characterization of CO2-responsive poly(amino acid) derivatives with guanidine group. Polym. Bull. 72, 2605–2620 (2015). https://doi.org/10.1007/s00289-015-1425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1425-1

Keywords

  • CO2-responsive
  • Hydrogel
  • Polyaspartamides
  • Amphiphilic
  • Guanidine group