Skip to main content

Advertisement

Log in

Enhanced thermal stability of poly(methyl methacrylate) composites with fullerenes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The thermal stability of poly(methyl methacrylate) (PMMA) composites with the two fullerenes C60 and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), was studied over the whole composition range under nitrogen (N2) and air atmosphere using dynamic thermogravimetric analysis (TGA). The aim of this study was to compare the thermal stabilization effect of both fullerenes on PMMA. When compared with pure PMMA, both C60 and PCBM increase substantially the thermal degradation temperature of the corresponding composites, both in nitrogen and air atmospheres. The amounts of C60 and PCBM in the PMMA composites can be successfully determined along the whole composition range using TGA. The initial amounts of fullerene present in the composites correlates linearly with the residual mass values obtained above 450 °C in nitrogen and with the residual mass values observed at the temperatures of transition from the first to the second decomposition steps in air. There are no significant differences between the thermal stabilization effects of C60 and PCBM in both atmospheres (nitrogen and air).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hirata T, Kashiwagi T, Brown JE (1985) Thermal and oxidative degradation of poly(methyl methacrylate): weight loss. Macromolecules 18(7):1410–1418

    Article  CAS  Google Scholar 

  2. Manring LE (1988) Thermal degradation of saturated poly(methyl methacrylate). Macromolecules 21(2):528–530

    Article  CAS  Google Scholar 

  3. Manring LE (1989) Thermal degradation of poly(methyl methacrylate). 2. Vinyl-terminated polymer. Macromolecules 22(6):2673–2677

    Article  CAS  Google Scholar 

  4. Manring LE, Sogah DY, Cohen GM (1989) Thermal degradation of poly(methyl methacrylate). 3. Polymer with head-to-head linkages. Macromolecules 22(12):4652–4654

    Article  CAS  Google Scholar 

  5. Rychlý J, Pavlinec J (1990) Thermal degradation of free radically prepared poly(methyl methacrylate). A nonisothermal weight loss study. Polym Degrad Stab 28(1):1–15

    Article  Google Scholar 

  6. Manring LE (1991) Thermal degradation of poly(methyl methacrylate). 4. Random side-group scission. Macromolecules 24(11):3304–3309

    Article  CAS  Google Scholar 

  7. Song J, Fischer CH, Schnabel W (1992) Thermal oxidative degradation of poly(methyl methacrylate). Polym Degrad Stab 36(3):261–266

    Article  CAS  Google Scholar 

  8. Brown JE, Kashiwagi T (1996) Gas phase oxygen effect on chain scission and monomer content in bulk poly(methyl methacrylate) degraded by external thermal radiation. Polym Degrad Stab 52(1):1–10

    Article  CAS  Google Scholar 

  9. Peterson JD, Vyazovkin S, Wight CA (1999) Kinetic study of stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). J Phys Chem B 103(38):8087–8092

    Article  CAS  Google Scholar 

  10. Holland BJ, Hay JN (2001) The kinetics and mechanisms of the thermal degradation of poly(methyl methacrylate) studied by thermal analysis-Fourier transform infrared spectroscopy. Polymer 42(11):4825–4835

    Article  CAS  Google Scholar 

  11. Holland BJ, Hay JN (2002) The effect of polymerisation conditions on the kinetics and mechanisms of thermal degradation of PMMA. Polym Degrad Stab 77(3):435–439

    Article  CAS  Google Scholar 

  12. Ferriol M et al (2003) Thermal degradation of poly(methyl methacrylate) (PMMA): modelling of DTG and TG curves. Polym Degrad Stab 79(2):271–281

    Article  CAS  Google Scholar 

  13. Staggs JEJ (2007) Population balance models for the thermal degradation of PMMA. Polymer 48(13):3868–3876

    Article  CAS  Google Scholar 

  14. Dhibar AK et al (2009) Effect of clay platelet dispersion as affected by the manufacturing techniques on thermal and mechanical properties of PMMA-clay nanocomposites. J Appl Polym Sci 113(5):3012–3018

    Article  CAS  Google Scholar 

  15. Gao Z et al (2001) The characterization of organic modified montmorillonite and Its filled PMMA nanocomposite. J Therm Anal Calorim 64(2):467–475

    Article  CAS  Google Scholar 

  16. Laachachi A et al (2005) Use of oxide nanoparticles and organoclays to improve thermal stability and fire retardancy of poly(methyl methacrylate). Polym Degrad Stab 89(2):344–352

    Article  CAS  Google Scholar 

  17. Lu P (2011) The effects of different grafted clays on thermal properties of their PMMA composites. Polym Plast Technol Eng 50(15):1541–1545

    Article  CAS  Google Scholar 

  18. Pandey P et al (2012) Flammability and thermal characterization of PMMA/clay nanocomposites and thermal kinetics analysis. Polym Compos 33(11):2058–2071

    Article  CAS  Google Scholar 

  19. Wang WS et al (2012) Transparent and flame retardant PMMA/clay nanocomposites prepared with dual modified organoclay. Polym Adv Technol 23(3):625–631

    Article  CAS  Google Scholar 

  20. Xu Y et al (2004) Effect of clay type on morphology and thermal stability of PMMA–clay nanocomposites prepared by heterocoagulation method. Polymer 45(11):3735–3746

    Article  CAS  Google Scholar 

  21. Wang G-A, Wang C-C, Chen C-Y (2006) The disorderly exfoliated LDHs/PMMA nanocomposites synthesized by in situ bulk polymerization: The effects of LDH-U on thermal and mechanical properties. Polym Degrad Stab 91(10):2443–2450

    Article  CAS  Google Scholar 

  22. Manzi-Nshuti C et al (2009) The role of the trivalent metal in an LDH: synthesis, characterization and fire properties of thermally stable PMMA/LDH systems. Polym Degrad Stab 94(4):705–711

    Article  CAS  Google Scholar 

  23. Hu Y-H, Chen C-Y, Wang C-C (2004) Viscoelastic properties and thermal degradation kinetics of silica/PMMA nanocomposites. Polym Degrad Stab 84(3):545–553

    Article  CAS  Google Scholar 

  24. Pantaleón R, González-Benito J (2010) Structure and thermostability of PMMA in PMMA/silica nanocomposites: effect of high-energy ball milling and the amount of the nanofiller. Polym Compos 31(9):1585–1592

    Article  Google Scholar 

  25. Saladino ML et al (2012) The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA. Polym Degrad Stab 97(3):452–459

    Article  Google Scholar 

  26. Salami-Kalajahi M et al (2012) A study on the properties of PMMA/silica nanocomposites prepared via RAFT polymerization. J Polym Res 19(2):1–11

    Article  CAS  Google Scholar 

  27. Zou DQ, Yoshida H (2010) Size effect of silica nanoparticles on thermal decomposition of PMMA. J Therm Anal Calorim 99(1):21–26

    Article  CAS  Google Scholar 

  28. Carvalho HWP et al (2014) Structure and thermal behavior of PMMA–polysilsesquioxane organic–inorganic hybrids. Polym Degrad Stab 104:112–119

    Article  CAS  Google Scholar 

  29. Chen C-H et al (2010) Preparation, characterization, and thermal stability of novel PMMA/expandable graphite halogen-free flame retardant composites. Polym Compos 31(1):18–24

    Google Scholar 

  30. Kuan C-F et al (2008) Synthesis, characterization, flame retardance and thermal properties of halogen-free expandable graphite/PMMA composites prepared from sol–gel method. Polym Degrad Stab 93(7):1357–1363

    Article  CAS  Google Scholar 

  31. Pal M, Singh B, Gautam J (2012) Thermal stability and UV-shielding properties of polymethyl methacrylate and polystyrene modified with calcium carbonate nanoparticles. J Therm Anal Calorim 107(1):85–96

    Article  CAS  Google Scholar 

  32. Cinausero N et al (2011) Impact of modified alumina oxides on the fire properties of PMMA and PS nanocomposites. Polym Adv Technol 22(12):1931–1939

    Article  CAS  Google Scholar 

  33. Viratyaporn W, Lehman R (2011) Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. J Therm Anal Calorim 103(1):267–273

    Article  CAS  Google Scholar 

  34. Laachachi A et al (2004) Influence of Sb2O3 particles as filler on the thermal stability and flammability properties of poly(methyl methacrylate) (PMMA). Polym Degrad Stab 85(1):641–646

    Article  CAS  Google Scholar 

  35. Laachachi A et al (2005) Influence of TiO2 and Fe2O3 fillers on the thermal properties of poly(methyl methacrylate) (PMMA). Mater Lett 59(1):36–39

    Article  CAS  Google Scholar 

  36. Džunuzović E et al (2009) Thermal properties of PMMA/TiO2 nanocomposites prepared by in situ bulk polymerization. Polym Compos 30(6):737–742

    Article  Google Scholar 

  37. Demir MM et al (2006) PMMA/Zinc Oxide Nanocomposites Prepared by In-Situ Bulk Polymerization. Macromol Rapid Commun 27(10):763–770

    Article  CAS  Google Scholar 

  38. Laoutid F et al (2011) Effect of magnesium dihydroxide nanoparticles on thermal degradation and flame resistance of PMMA nanocomposites. Polym Adv Technol 22(12):1713–1719

    Article  CAS  Google Scholar 

  39. Vodnik VV et al (2010) Thermal and optical properties of silver–poly(methylmethacrylate) nanocomposites prepared by in situ radical polymerization. Eur Polym J 46(2):137–144

    Article  CAS  Google Scholar 

  40. Motaung TE et al (2012) PMMA–titania nanocomposites: properties and thermal degradation behaviour. Polym Degrad Stab 97(8):1325–1333

    Article  CAS  Google Scholar 

  41. Motaung TE et al (2012) Morphology, mechanical properties and thermal degradation kinetics of PMMA-zirconia nanocomposites prepared by melt compounding. eXPRESS. Polym Lett 6(11):871–881

    Article  CAS  Google Scholar 

  42. Chang TC et al (2002) Effect of phenolic phosphite antioxidant on the thermo-oxidative degradation of PMMA. Polym Degrad Stab 77(1):29–34

    Article  CAS  Google Scholar 

  43. Gałka P, Kowalonek J, Kaczmarek H (2014) Thermogravimetric analysis of thermal stability of poly(methyl methacrylate) films modified with photoinitiators. J Therm Anal Calorim 115(2):1387–1394

    Article  Google Scholar 

  44. Pozdnyakov AO et al (2011) Thermal decomposition study of poly(methyl methacrylate)/carbon nanofiller composites. Polym Adv Technol 22(1):84–89

    Article  CAS  Google Scholar 

  45. Troitskii BB et al (1997) Retardation of Thermal Degradation of PMMA and PVC by C60. Eur Polym J 33(10–12):1587–1590

    Article  CAS  Google Scholar 

  46. Troitskii BB et al (2000) Inhibition of thermo-oxidative degradation of poly(methyl methacrylate) and polystyrene by C60. Eur Polym J 36(5):1073–1084

    Article  CAS  Google Scholar 

  47. Ginzburg BM et al (2001) The effect of fullerene C60 on the thermooxidative degradation of a free-radical PMMA studied by thermogravimetry and calorimetry. Tech Phys Lett 27(10):806–809

    Article  CAS  Google Scholar 

  48. Zhogova KB et al (2005) Investigation of fullerene C60 effect on properties of polymethylmethacrylate exposed to ionizing radiation. Eur Polym J 41(6):1260–1264

    Article  CAS  Google Scholar 

  49. Zuev VV, Bertini F, Audisio G (2005) Fullerene C60 as stabiliser for acrylic polymers. Polym Degrad Stab 90(1):28–33

    Article  CAS  Google Scholar 

  50. Zhao L et al (2014) The effect of fullerene on the resistance to thermal degradation of polymers with different degradation processes. J Therm Anal Calorim 115(2):1235–1244

    Article  CAS  Google Scholar 

  51. Jipa S et al (2003) Chemiluminescence investigation of thermo-oxidative degradation of polyethylenes stabilized with fullerenes. Polym Degrad Stab 80(2):209–216

    Article  CAS  Google Scholar 

  52. Zeinalov EB, Koßmehl G (2001) Fullerene C60 as an antioxidant for polymers. Polym Degrad Stab 71(2):197–202

    Article  CAS  Google Scholar 

  53. Kim J-W et al (2012) Preparation and Characterizations of C60/Polystyrene Composite Particle Containing Pristine C60 Clusters. Bull Korean Chem Soc 33(9):2966–2970

    Article  CAS  Google Scholar 

  54. Fernandes L, Gaspar H, Bernardo G (2014) Inhibition of thermal degradation of polystyrene by C60 and PCBM: a comparative study. Polym Test 40:63–69

    Article  CAS  Google Scholar 

  55. Liu H et al (2010) Thermal degradation and flammability properties of HDPE/EVA/C60 nanocomposites. Thermochim Acta 506(1–2):98–101

    Article  CAS  Google Scholar 

  56. Bernardo G, Bucknall DG (2013) Recent progress in the understanding and manipulation of morphology in polymer: fullerene photovoltaic cells. Optoelectronics—Advanced Materials and Devices

  57. Rodrigues A et al (2013) Thermal stability of P3HT and P3HT:PCBM blends in the molten state. Polym Test 32(7):1192–1201

    Article  CAS  Google Scholar 

  58. Gaspar H et al (2014) Increase in thermo-oxidation stability of conjugated polymers at high temperatures. Polym Test 34:183–191

    Article  CAS  Google Scholar 

  59. Dencheva N et al (2014) Fullerene-modified polyamide 6 by in situ anionic polymerization in the presence of PCBM. J Mater Sci 49(14):4751–4764

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Foundation for Science and Technology (FCT) through the program PEst-C/CTM/LA0025/2013 (Strategic Project—LA 25—2013–2014) and by the European Regional Development Fund (FEDER) through the program COMPETE (Project EXPL/CTM-POL/0933/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Bernardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaspar, H., Fernandes, L., Pereira, P. et al. Enhanced thermal stability of poly(methyl methacrylate) composites with fullerenes. Polym. Bull. 72, 1775–1786 (2015). https://doi.org/10.1007/s00289-015-1370-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1370-z

Keywords

Navigation