Skip to main content
Log in

Thermal conductivity of graphite-filled LDPE composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The thermal conductive model of inorganic particulate-filled polymer composites was proposed based on the ANSYS parametric finite element technology, and the numerical simulation of the effective thermal conductivity of low-density polyethylene (LDPE) composite filled with graphite powder was made. It was found that the simulated effective thermal conductivity of the composite increased nonlinearly with an increase of the filler volume fraction, and increased with increasing the particle diameter. Finally, the finite element numerical simulations were compared with the experimental measured data from the LDPE/graphite composite under the same conditions reported in the literature. The results showed that the simulations of the effective thermal conductivity were roughly close to the experimental measured data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fukai J, Kanou M (2000) Thermal conductivity enhancement of energy storage media using carbon fibers. Energy Convers Manag 41:1543–1556

    Article  CAS  Google Scholar 

  2. Tavman IH (1996) Thermal and mechanical properties of aluminum powder-filled high-density polyethylene composites. J Appl Polym Sci 62:2161–2167

    Article  CAS  Google Scholar 

  3. Krupa I, Novak I, Chodak I (2004) Electrically and thermally conductive polyethylene/graphite composites and their mechanical properties. Synth Met 145(2–3):245–252

    Article  CAS  Google Scholar 

  4. Agari Y, Uno T (1986) Estimation on thermal conductivities of filled polymer. J Appl Polym Sci 32:5705–5712

    Article  CAS  Google Scholar 

  5. Agari Y, Ueda A, Nagai S (1993) Thermal conductivity of a polymer composite. J Appl Polym Sci 49:1625–1634

    Article  CAS  Google Scholar 

  6. Agari Y, Ueda A, Nagai S (1991) Thermal conductivity of polyethylene filled with disoriented short-cut carbon fibers. J Appl Polym Sci 43:1117–1124

    Article  CAS  Google Scholar 

  7. Agari Y, Ueda A, Nagai S (1991) Thermal conductivity of composites in several types of dispersion systems. J Appl Polym Sci 42:1665–1669

    Article  CAS  Google Scholar 

  8. Liang JZ, Li FH (2007) Heat transfer in polymer composites filled with inorganic hollow micro-spheres: I. A theoretical model. Polym Test 26(8):1025–1030

    Article  CAS  Google Scholar 

  9. Liang JZ, Liu GS (2009) A new heat transfer model of inorganic particulate-filled polymer composites. J Mater Sci 44(17):4715–4720

    Article  CAS  Google Scholar 

  10. Belova IV, Murch GE (2004) Monte Carlo simulation of the effective thermal conductivity in two phase material. J Mater Process Technol 154:741–745

    Article  Google Scholar 

  11. Kumlutas D, Tavmana IH, Coban MT (2003) Thermal conductivity of particle filled polyethylene composite materials. Compos Sci Technol 63:113–117

    Article  CAS  Google Scholar 

  12. Liang JZ, Li FH (2007) Simulation of heat transfer in hollow-glass-bead-filled polypropylene composites by finite element method. Polym Test 26(3):419–424

    Article  CAS  Google Scholar 

  13. Zhang YP (1995) Numerical analysis of effective thermal conductivity of mixed solid materials. Mater Des 12(2):91–95

    CAS  Google Scholar 

  14. Liang JZ, Li RKY, Tjong SC (1997) Morphology and tensile properties of glass bead filled low density polyethylene composites. Polym Testing 16:529–548

    Article  CAS  Google Scholar 

  15. Liang JZ (2013) An introduction to heat transfer theory of polymer composites. South China University of Technology Press, Guangzhou

    Google Scholar 

  16. Hassani B, Hinton E (1998) A review of homogenization and topology optimization I-homogenization theory for media with periodic structure. Comput Struct 69:707–717

    Article  Google Scholar 

  17. Choy CL (1977) Thermal conductivity of polymer. Polymer 18(10):984–1004

    Article  CAS  Google Scholar 

  18. Yang HT. Studies of thermal conductive properties of rubber and plastics materials. Master Thesis, Northwestern Polytechnical University, Xian, China, 2006

  19. Liang JZ, Li RKY (2001) Measurement of dispersion of glass beads in PP matrix. J Reinf Plast Compos 20(8):630–638

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Zhao Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, JZ., Qiu, YL. Thermal conductivity of graphite-filled LDPE composites. Polym. Bull. 72, 1723–1734 (2015). https://doi.org/10.1007/s00289-015-1366-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1366-8

Keywords

Navigation