Skip to main content
Log in

Investigation of removal of chemical oxygen demand (COD) wastewater and antibacterial activity of nanosilver incorporated in poly (acrylamide-co-acrylic acid)/NaY zeolite nanocomposite

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, silver–zeolite–poly (acrylamide-co-acrylic acid) semi-interpenetrating hydrogels with different percentage of silver (Ag) were synthesized by two methods. In the first method, silver nanopowder particle was added to (acrylamide-co-acrylic acid)/Y zeolite hydrogels by radical graft copolymerization. In the second method, Ag nanolayer was deposited on poly (acrylamide-co-acrylic acid)/Y zeolite by magnetron sputtering method. To determine the structure of Ag–zeolite–poly (acrylamide-co-acrylic acid) nanocomposite, the X-ray diffraction, Fourier transfer infrared, scanning electron microscopy and thermogravimetric analysis were carried out. Then, their ability in removing wastewater fertilizer, using chemical oxygen demand was studied. Also, the effect of some factors such as temperature, pH, content of adsorbent, and the percentage of silver were investigated. The in vitro antibacterial activity of these composites was evaluated against Bacillus subtilis (as Gram-positive bacteria), Pseudomonas aeruginosa (as Gram-negative bacteria), and compared with standard drugs. The results show that Ag–zeolite–poly (acrylamide-co-acrylic acid) nanocomposite which nanosilver incorporated to it by radical graft copolymerization has more inhibition on bacterial growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Finch G, Black E, Gyurek L (1994) Ozone and chlorine inactivation of Cryptosporidium. In: Water quality technology conference, AWWA, pp 1303–1309

  2. Gujer W, von Gunten U (2003) A stochastic model of an ozonation reactor. Water Res 37:1667–1677

    Article  CAS  Google Scholar 

  3. Hassinger E, Thomas AD, Paul BB (1994) Reverse osmosis units water facts

  4. Marambio-Jones C, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551

    Article  CAS  Google Scholar 

  5. Mthombenia NH, Mpenyana-Monyatsib L, Onyangoa MS, Momba MNB (2012) Breakthrough analysis for water disinfection using silver nanoparticles coated resin beads in fixed-bed column. J Hazard Mater 217–218:133–140

    Article  Google Scholar 

  6. Rivera-Garza M, Olguon MT, Garcoa-Sosa I, Alcantara D, Rodrõguez-Fuentes G (2000) Silver supported on natural Mexican zeolite as an antibacterial material. Microporous Mesoporous Mater 39:431–444

    Article  CAS  Google Scholar 

  7. Lucia Boschetto D, Lerin L, Cansian R, Berenice Castell Pergher S, Di Luccio M (2012) Preparation and antimicrobial activity of polyethylene composite films with silver exchanged zeolite-Y. Chem Eng J 204:210–216

    Article  Google Scholar 

  8. Castellano JJ, Shafii SM, Ko F, Donate G, Wright TE, Mannari RJ (2007) Comparative evaluation of silver-containing antimicrobial dressings and drugs. Int Wound J 4:114–122

    Article  Google Scholar 

  9. Lalueza P, Monzon M, Arruebo M, Santamaria J (2011) Antibacterial action of Ag-containing MFI zeolite at low Ag loadings. Chem Commun 47:680–682

    Article  CAS  Google Scholar 

  10. Davenas J, Thévenard F, Philippe MN (2002) Arnaud, surface implantation treatments to prevent infection complications in short term devices. Biomol Eng 19:263–268

    Article  CAS  Google Scholar 

  11. Pehlivan H, Balköse D, Ülkü S, Tihminlioglu F (2005) Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Compos Sci Technol 65:2049–2058

    Article  CAS  Google Scholar 

  12. Radheshukumar C, Munstedt H (2006) Antimicrobial polymers from polypropylene/silver composites—Ag+ release measured by anode stripping voltammetry. React Funct Polym 66:780–788

    Article  Google Scholar 

  13. Zampino D, Ferreri T, Puglisi C, Mancuso M, Zaccone R, Scaffaro R, Bernardo D (2011) PVC silver zeolite composites with antimicrobial properties. J Mater Sci 46:6734–6743

    Article  CAS  Google Scholar 

  14. Kamisoglu K, Aksov EA, Akata B, Hasirci N, Baç N (2008) Preparation and characterization of antibacterial zeolite–polyurethane composites. J Appl Polym Sci 110:2854–2861

    Article  CAS  Google Scholar 

  15. Zendehdel M, Barati A, Alikhani H (2011) Removal of heavy metals from aqueous solution by poly(acrylamide-co-acrylic acid) modified with porous materials. Polym Bull 67:343–360

    Article  CAS  Google Scholar 

  16. Buchholz F (1998) In: Buchholz FL, Graham T (eds) Modern superabsorbent polymer technology, Network, Wiley

  17. Yi JZ, Zhang LM (2008) Removal of methylene blue dye from aqueous solution by adsorption onto sodium humate/polyacrylamide/clay hybrid hydrogels. Bioresour Technol 99:2182–2186

    Article  CAS  Google Scholar 

  18. Kabiri K, Zohuriaan-mehr MJ (2003) Superabsorbent hydrogel composites. Polym Adv Technol 14:438–444

    Article  CAS  Google Scholar 

  19. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14:1120–1124

    Article  CAS  Google Scholar 

  20. Lee W, Yang L (2004) Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly(sodium acrylate) and montmorillonite nanocomposite superabsorbents. J Appl Polym Sci 92:3422–3429

    Article  CAS  Google Scholar 

  21. Luo W, Zhang W, Chen P, Fang Y (2005) Synthesis and properties of starch grafted poly[acrylamide-co-(acrylic acid)]/montmorillonite nanosuperabsorbent via γ-ray irradiation technique. J Appl Polym Sci 96:1341–1346

    Article  CAS  Google Scholar 

  22. Lee W, Chen Y (2005) Preparation of reactive mineral powders used for poly(sodium acrylate) composite superabsorbents. J Appl Polym Sci 97:855–861

    Article  CAS  Google Scholar 

  23. Wan T, Wang X, Yuan Y, He W (2006) Preparation of a kaolinite-poly (acrylic acid acrylamide) water superabsorbent by photopolymerization. J Appl Polym Sci 102:2875–2881

    Article  CAS  Google Scholar 

  24. Wu J, Wei Y, Lin S (2003) Study on starch-graft acrylamide/mineral powder superabsorbent composite. Polymer 44:6513–6520

    Article  CAS  Google Scholar 

  25. Lin J, Wu J, Yang Z, Pu M (2001) Synthesis and properties of poly (acrylic acid)/mica superabsorbent nanocomposite. Macromol Rapid Commun 22:422–424

    Article  CAS  Google Scholar 

  26. Wu J, Lin J, Zhou M (2000) Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite. Macromol Rapid Commun 21:1032–1034

    Article  CAS  Google Scholar 

  27. Tao W, Xiaoqing W, Yi Y, Wenqiong H (2006) Preparation of bentonite-poly[(acrylic acid)-acrylamide] water superabsorbent by photopolymerization. Polym Int 55:1413–1419

    Article  CAS  Google Scholar 

  28. Li P, Kim N, Heo SB, Lee JH (2008) Novel PAAm/laponite clay nanocomposite hydrogels with improved cationic dye adsorption behavior. Composites B 39:756–763

    Article  Google Scholar 

  29. Domini CE, Hidalgo M, Marken F, Canals A (2006) Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: closed microwaves, open microwaves and ultrasound irradiation. Anal Chim Acta 561:210–217

    Article  CAS  Google Scholar 

  30. Li BX, Zhang ZJ, Wang J, Xu CL (2003) Chemiluminescence system for automatic determination of chemical oxygen demand using flow injection analysis. Talanta 61:651–658

    Article  CAS  Google Scholar 

  31. Devi R, Dahiya RP (2006) Chemical oxygen demand (COD) reduction in domestic wastewater by fly ash and brick kiln ash. Water Air Soil Pollut 174:33–46

    Article  CAS  Google Scholar 

  32. Breck DW, Tonawanda NY (1964) Assigned to Union Carbide, pat. no. 3130007, Patented Appr. 21(1964)

  33. Zendehdel M, Barati A, Alikhani H, Hekmat A (2009) Removal of methylene blue dye from wastewaters by absorption on to sIPN hydrogels composed of poly (acrylamide-co-acrylic acid) and poly vinyl alcohol. In: 1st International conference on advances in wastewater treatment and reuse, 10–12 November 2009, Tehran

  34. Li C, Song G (2009) Photocatalytic degradation of organic pollutants and detection of chemical oxygen demand by fluorescence methods. Sens Actuators B 137:432–436

    Article  CAS  Google Scholar 

  35. Hwang JJ, Ma TW (2012) Preparation, morphology, and antibacterial properties of polyacrylonitrile/montmorillonite/silver nanocomposites. Mater Chem Phys 136:613–623

    Article  CAS  Google Scholar 

  36. Ni Y-H, Ge X-W, Zhang Z-C (2005) Preparation and characterization of ZnS/poly (AAm-co-AAc) dendritical nanocomposites by γ-irradiation. Mater Sci Eng 119:51–54

    Article  Google Scholar 

  37. Shameli K, Ahmad MB (2010) Synthesis and characterization of silver/talc nanocomposites using the wet chemical reduction method. Int J Nanomed 5:743–751

    Article  CAS  Google Scholar 

  38. Shameli K, Bin Ahmad M, Zargar M, Md W, Wan Yunus Z, Azowa Ibrahim N (2011) Fabrication of silver nanoparticles doped in the zeolite framework and antibacterial activity. Int J Nanomed 6:331–341

    Article  CAS  Google Scholar 

  39. Klug HP, Leroy EA (1974) X-ray diffraction procedure. Wiley, New York, p 654

  40. Hyeung Park J, Rezaul Karim M, Kyo Kim I, Woo Cheong I, Won Kim J, Gyu Bae D, Won Cho J, Hyun Yeum J (2010) Electrospinning fabrication and characterization of poly(vinyl alcohol)/montmorillonite/silver hybrid nanofibers for antibacterial applications. Colloid Polym Sci 288:115–121

    Article  Google Scholar 

  41. Liao C, Yu P, Zhao J, Wang L, Luo Y (2011) Preparation and characterization of NaY/PVDF hybrid ultrafiltration membranes containing silver ions as antibacterial materials. Desalination 272:59–65

    Article  CAS  Google Scholar 

  42. Haraguchi K, Takhehsa T, Fan S (2002) Effect of clay content on the properties of nanocomposite hydrogels composed poly (N-isopropyl acrylamids and clay. Macromoleculse 35:10162–10171

    Article  CAS  Google Scholar 

  43. Chaudhari PK, Mishra IM, Chand S (2007) Decolourization and removal of chemical oxygen demand (COD) with energy recovery: treatment of biodigester effluent of a molasses-based alcohol distillery using inorganic coagulants. Colloids Surf A Physicochem Eng Asp 296:238–247

    Article  CAS  Google Scholar 

  44. Sedaghat T, Aminian M, Bruno G, Rudbari HA (2013) Binuclear organotin(IV) complexes with adipic dihydrazone: synthesis, spectral characterization, crystal structures and antibacterial activity. J Organometal Chem 737:26–31

    Article  CAS  Google Scholar 

  45. Juan-Luis R, Alian F (2007) Pseudomonas, virulence and gene regulation. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojgan Zendehdel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zendehdel, M., Zendehnam, A., Hoseini, F. et al. Investigation of removal of chemical oxygen demand (COD) wastewater and antibacterial activity of nanosilver incorporated in poly (acrylamide-co-acrylic acid)/NaY zeolite nanocomposite. Polym. Bull. 72, 1281–1300 (2015). https://doi.org/10.1007/s00289-015-1326-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1326-3

Keywords

Navigation