Skip to main content
Log in

Effect of triphenylamine as electron-donor evenly spaced in 2, 4, 6 and 8 thiophene units of the main chain: synthesis and properties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Several poly(thiophene) derivatives containing triphenylamine (TPA) as electron-donor were synthesized by chemical homopolymerization in CHCl3 media using FeCl3 as oxidizing agent. Monomers containing TPA bonded by imine groups to terminal thiophene, bithiophene, terthiophene units allows polymerization to be performed in conditions similar to thiophene. TPA units are regularly spaced in 2, 4, 6 and 8 thiophenyl units in the main chain. TPA electron-donor effect on the polymers chains, as compared to poly(thiophene) was studied. Polymers, labeled as poly(TPA-Th), poly(TPA-biTh) and poly(TPA-Terth) were characterized by 1H-NMR, FT-IR and UV–visible spectroscopy, elemental analysis, thermal stability (TGA) intrinsic viscosity, differential scanning calorimetry (DSC) and electrochemically using cyclic voltammetry (CV). The characterizations are consistent with the proposed structures. The polymers exhibited different optical absorption. They exhibited low intrinsic viscosity, a different effective conjugation and high thermal stability. Moreover, the polymers displayed two redox processes with a redox potential lower than that of poly(thiophene). Highest Occupied Molecular Orbital (HOMO), Lowest Unoccupied Molecular Orbital (LUMO) and optical band gap (E g) were measured and the obtained values were compared with those of poly(thiophene). The effect of the presence of TPA units in the thiophenyl chains on HOMO, LUMO, band gap, redox potential and on TGA is reported. To complete the series, HOMO/LUMO levels and band gap of a polymer containing TPA with 8 thiophenyl units in the chain were determined using theoretical calculations. The results proved that, with respect to poly(thiophene), it is possible to decrease HOMO and LUMO without changing the band gap, projecting itself as a potential polymer to be studied in organic photocells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA (1999) Electroluminescence in conjugated polymers. Nature (London) 397:121–128

    Article  CAS  Google Scholar 

  2. Bernius MT, Inbasekaran M, Brien JO (2000) Progress with light-emitting polymers. Adv Mater 12:1737–1750

    Article  CAS  Google Scholar 

  3. Wang X, Li H, Liu P (2014) Well-defined aniline-triphenylamine copolymer nanotubes: preparation, photoluminescent, and electrochemical properties. Electrochim Acta 25:630–636

    Article  Google Scholar 

  4. Li Z, Chen Y, Du Y, Wang X, Yang P, Zheng J (2012) Triphenylamine-functionalized graphene decorated with Pt nanoparticles and its application in photocatalytic hydrogen production. Int J Hydrogen Energy 37:4880–4888

    Article  CAS  Google Scholar 

  5. Mikroyannidis JA, Stylianakis MM, Suresh P, Balraju P, Sharma GD (2009) Low band gap vinylene compounds with triphenylamine and benzothiadiazole segments for use in photovoltaic cells. Org Electron 10:1320–1333

    Article  CAS  Google Scholar 

  6. Roquet S, Cravino A, Leriche P, Aleveque O, Frere P, Roncali J (2006) Triphenylamine–thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. J Am Chem Soc 128:3459–3466

    Article  CAS  Google Scholar 

  7. Ma C, Zhang B, Liang Z, Xie P, Wang X, Zhang B, Cao Y, Jiang X, Zhang ZA (2002) Novel n-type red luminescent material for organic light-emitting diodes. J Mater Chem 12:1671–1675

    Article  CAS  Google Scholar 

  8. Zhu L, Yang HB, Zhong C, Li CM (2014) Rational design of triphenylamine dyes for highly efficient p-type dye sensitized solar cells. Dyes Pigment 105:97–104

    Article  CAS  Google Scholar 

  9. Tarsang R, Promarak V, Sudyoadsuk T, Namuangruk S, Jungsuttiwong S (2014) Tuning the electron donating ability in the triphenylamine based D–π–A architecture for highly efficient dye-sensitized solar cells. J Photochem Photobiol A 273:8–16

    Article  CAS  Google Scholar 

  10. Liu X, Cao Z, Huang H, Liu X, Tan Y, Chen H, Pei Y, Tan S (2014) Novel D–D–π–A organic dyes based on triphenylamine and indole-derivatives for high performance dye-sensitized solar cells. J Power Sources 248:400–406

    Article  CAS  Google Scholar 

  11. Meng F, Liu C, Hua J, Cao Y, Chen K, Tian H (2003) Novel linear and tri-branched copolymers based on triphenylamine for non-doping emitting materials. Eur Polym J 39:1325–1331

    Article  CAS  Google Scholar 

  12. Qu J, Kawasaki R, Shiotsuki M, Sanda F, Masuda T (2006) Synthesis and properties of polyacetylenes carrying N-phenylcarbazole and triphenylamine moieties. Polymer 47:6551–6559

    Article  CAS  Google Scholar 

  13. He Q, Huang H, Lin H, Yang J, Bai F (2003) Synthesis and Characterization of a novel hyperbranched oligomer with 1,3,5-trisphenylbenzene as cores. Synth Met 135:165–166

    Article  Google Scholar 

  14. Palewicz M, Iwan A, Doskocz J, Strek W, Sek D, Kaczmarczyk B, Mazurek B (2011) Optical and structural study of thin film of polyazomethine with triphenylamine unit prepared via spin-coating method. Polym Bull 66:65–76

    Article  CAS  Google Scholar 

  15. Niu H, Huang Y, Bai X, Li X, Zhang G (2004) Study on crystallization, thermal stability and hole transport properties of conjugated polyazomethine materials containing 4,4′-bisamine-triphenylamine. Mater Chem Phys 86:33–37

    Article  CAS  Google Scholar 

  16. Niu HJ, Huang YD, Bai X, Li X (2004) Novel poly-Schiff bases containing 4,4′-diamino-triphenylamine as hole transport material for organic electronic device. Mater Lett 58:2979–2983

    Article  CAS  Google Scholar 

  17. Sek D, Iwan A, Jarzabek B, Kaczmarczyk B, Kasperczyk J, Mazurak Z, Domanski M, Karon K, Lapkowski M (2008) Hole transport triphenylamine–azomethine conjugated system: synthesis and optical. Photoluminescence Electrochem Prop Macromol 41:6653–6663

    CAS  Google Scholar 

  18. Yang C-J, Jenekhe SA (1995) Conjugated aromatic polyimines, and properties of new aromatic polyazomethines. Macromolecules 28:1180–1196

    Article  CAS  Google Scholar 

  19. Banerjee S, Saxena C, Gutch PK, Gupta DC (1996) Poly-schiff bases II. Synthesis and characterization of polyetherketoimines. Eur Polym J 32:661–664

    Article  CAS  Google Scholar 

  20. Diaz FR, Moreno J, Tagle LH, East GA (1999) Synthesis, characterization and electrical properties of polyimines derived from selenophene. Synth Met 100:187–193

    Article  CAS  Google Scholar 

  21. Hathoot AA et al (2000) Electro-oxidative polymerization of Schiff-base of 1,8-diaminonaphthaline and 3-acetylthiophene. I. Preparation and study the redox behaviour of the resulting polymer. Eur Polym J 36:1063–1071

    Article  CAS  Google Scholar 

  22. Diab AS, Hathoot AA, Abdel-Azzem M, Merz A (2000) Preparation of a novel conducting polymer by electropolymerization of thiophenylidine 8-naphthylamine Schiff-base. Eur Polym J 36:1959–1965

    Article  CAS  Google Scholar 

  23. Simionescu CI, Grigoras M, Cianga I, Diaconu I, Farcas A (1994) Chemical synthesis of some Schiff base type polymers containing pyrrole units. Polym Bull 32:257–264

    Article  CAS  Google Scholar 

  24. Sánchez CO, Bèrnede JC, Cattin L, Makha M, Gatica N (2014) Schiff base polymer based on triphenylamine moieties in the main chain. Characterization and studies in solar cells. Thin Solid Films 562:495–500

    Article  Google Scholar 

  25. Frisch MJ, Frisch J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR et al (2004) Gaussian 03, Revision c.02. Gaussian Inc., Wallingford

  26. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys 38:3098–3100

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Development of The Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter 37:785–789

    Article  CAS  Google Scholar 

  29. Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comput Chem 22:976–984

    Article  CAS  Google Scholar 

  30. Liou GS, Hsiao SH, Huang NK, Yang YL et al (2006) Synthesis, photophysical, and electrochromic characterization of wholly aromatic polyamide blue-light-emitting materials. Macromolecules 39:5337–5346

    Article  CAS  Google Scholar 

  31. Roncali J (1997) Synthetic principles for bandgap control in linear π-conjugated sistems. Chem Rev 97:173–206

    Article  CAS  Google Scholar 

  32. Roncali J, Garnier F, Lemaire M, Garreau R (1986) Poly mono, bi- and trithiophene: effect of oligomer chain length on the polymer properties. Synth Met 15:323–331

    Article  CAS  Google Scholar 

  33. Ribeiro AS, Gazotti WA, Nogueira VC, Machado DA, Dos santos Filho PF, De Paoli MA (2004) Poly(3-alkyl)thiophene derivatives as promising materials assembling an electrochromic device. J Chil Chem Soc 49:197–204

    Article  CAS  Google Scholar 

  34. Csaba V, Lukkari J, Kankare J (1994) Electrochemically polymerized terthiophene derivatives carrying aromatic substituents. Macromolecules 27:3322–3329

    Article  Google Scholar 

  35. Roncali J (1992) Conjugated poly(thiophenes): synthesis, functionalization and applications. Chem Rev 92:711–738

    Article  CAS  Google Scholar 

  36. Zamora P, Diaz FR, Valle MD, Louarn G, Cattin L, Bernède JC (2013) Redox study of polyaniline derivatives for potential use in photovoltaic devices. Int J Sci 2:1–15

    Google Scholar 

  37. Bavastrello V, Carrara S (2004) Optical and electrochemical properties of poly(o-toluidine) multiwalled carbon nanotubes composite Langmuir–Schaefer films. Langmuir 20:969–973

    Article  CAS  Google Scholar 

  38. Brovelli F, Bernède JC, Valle MA, Díaz FR, Berredjem Y (2007) Electrochemical and optical studies of 1,4-diaminoanthraquinone for solar cell applications. Polym Bull 58:521–527

    Article  CAS  Google Scholar 

  39. Link S, Richter T, Yurchenko O, Heinze J, Ludwigs S (2010) Electrochemical behavior of electropolymerized and chemically synthesized hyperbranched polythiophenes. J Phys Chem B 114:10703–10708

    Article  CAS  Google Scholar 

  40. Ng SC, Miao P (1999) Electrochemical synthesis and characterization studies of poly[3,3′-dialkylsulfanyl-2,2′-bithiophene] films. Macromolecules 32:5313–5320

    Article  CAS  Google Scholar 

  41. Wei Y, Chan CC, Tian J, Jang GW, Hsueh KF (1991) Electrochemical polymerization of thiophenes in the mechanism of the polymerization. Chem Mater 3:888–897

    Article  CAS  Google Scholar 

  42. Fichou D, Horowitz G, Xu B, Gamier F (1990) Stoichiometric control of the successive generation of the radical cation and dication of extended–conjugated oligothiophenes: a quantitative model for doped polythiophene. Synth Met 39:243–259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fondecyt financial support through project 1120055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. O. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez, C.O., Schott, E., Zárate, X. et al. Effect of triphenylamine as electron-donor evenly spaced in 2, 4, 6 and 8 thiophene units of the main chain: synthesis and properties. Polym. Bull. 72, 897–913 (2015). https://doi.org/10.1007/s00289-015-1313-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1313-8

Keywords

Navigation