Skip to main content
Log in

Graphene modifications in polylactic acid nanocomposites: a review

  • Review
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Considerable interest has been devoted to graphene since this material has shown promising and excellent results in mechanical and thermal properties. This finding has attracted more researchers to discover the attributes of graphene due to its extensive and potential applications. This paper reviewed the recent advances in the modification of graphene and the fabrication of polylactic acid/graphene nanocomposite. The different techniques that have been employed to prepare graphene, such as reduction of graphene oxide and chemical vapor deposition, are discussed briefly. The preparations of PLA/graphene nanocomposites are described using in situ polymerization, solution, and melt blending; and the properties of these nanocomposites are reviewed. Due to the difficulties in obtaining good dispersions, modifications of nanomaterials have been the critical issues that lead to excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  2. Avéros L (2008) Polylactic acid: synthesis, properties and applications. In: Belgacem MN, Gandini A (eds) Book Chapter 21: Monomers, polymers, and composites from renewable resources. pp 433–50

  3. Market Study Bioplastics, Ceresana, Dec 2011. www.ceresana.com/en/market-studies/plastics/bioplastics/

  4. Doi Y, Steinbúchel A (2002) Biopolymers, applications and commercial products—polyesters III. Wiley-VCH, Weiheim, p 410

    Google Scholar 

  5. Sódergárd A, Stolt M (2010) In Chapter 3: Industrial production of high molecular weight poly(lactic acid). In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing and applications. Wiley, New Jersey

    Google Scholar 

  6. Korhonen H, Helminen A, Seppala JV (2001) Synthesis of polylactide in the presence of co-initiators with different number of hydroxyl groups. Polymer 42:7541–7549

    CAS  Google Scholar 

  7. Han DK, Hubbell JA (1996) Lactide-based poly(ethylene glycol) polymer networks for scaffolds in tissue engineering. Macromolecules 29:5233–5235

    CAS  Google Scholar 

  8. Zhang X, MacDonald DA, Goosen MF, McAuley KB (1994) Mechanism of lactide polymerization in the presence of stannous octoate: The effect of hydroxyl and carboxylic acid substances. J Polym Sci Part A Polym Chem 32:2965–2970

    CAS  Google Scholar 

  9. Hyon SH, Jamshidi K, Ikada Y (1997) Synthesis of polylactide with different molecular weights. Biomaterials 18:1503–1508

    CAS  Google Scholar 

  10. Jacobsen S, Fritz HG, Degee P, Dubois P, Jerome R (2000) New developments on the ring-opening polymerization of polylactide. Ind Crops Prod 11(2–3):265–275

    CAS  Google Scholar 

  11. Rafier G, Lang J, Jobmann M, Bechthhold I (2003) Process for manufacturing homo and copolyesters of lactic acid. U.S. Patent 6,657,042, 2 Dec 2003

  12. Griffith LG (2000) Polymeric biomaterials. Acta Mater 48:263–277

    CAS  Google Scholar 

  13. Cheng Y, Deng S, Chen P, Ruan R (2009) Polylactic acid (PLA) synthesis and modifications: a review. Front Chem China 4:259–264

    Google Scholar 

  14. Nampoothiri KM, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Biores Technol 101:8493–8501

    Google Scholar 

  15. Sódergárd A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci (Oxford) 27:1123–1163

    Google Scholar 

  16. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    CAS  Google Scholar 

  17. Oyama HT, Tanaka Y, Kadosaka A (2009) Rapid controlled hydrolytic degradation of poly(i-lactic acid) by blending with poly(aspartic acid-co-i-lactide). Polym Degrad Stab 94:1419–1426

    CAS  Google Scholar 

  18. Taubner V, Shishoo R (2001) Influence of processing parameters on the degradation of poly(l-lactide) during extrusion. J Appl Polym Sci 79:2128–2135

    CAS  Google Scholar 

  19. Anderson KS, Schreck KM, Hilmyer MA (2008) Toughening polylactide. Polym Rev 48:85–108

    CAS  Google Scholar 

  20. Mark JE (2009) Polymer data handbook. Oxford University Press, London, p 1264

    Google Scholar 

  21. Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic) acid modifications. Prog Polym Sci 35:338–356

    CAS  Google Scholar 

  22. Clarinval AM, Halleux J (2005) Classification of biodegradable polymers. In: Smith R (ed) Biodegradable polymers for industrial applications, 1st edn. CRC Press, Boca Raton, FL, pp 3–31

  23. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    CAS  Google Scholar 

  24. Fang Q, Hanna MA (1999) Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind Crops Prod 10:47–53

    CAS  Google Scholar 

  25. Dorgan JR, Lehermeier HJ, Mang M (2000) Thermal and rheological properties of commercial-grade poly(lactic acid)s. J Polym Environ 8:1–9

    Google Scholar 

  26. Lehermeier HJ, Dorgan JR (2000) Poly(lactic acid) properties and prospect of an environmentally benign plastic: melt rheology of linear and branched blends. In: Fourteenth symposium on thermophysical properties

  27. Zhang W, Zheng S (2007) Synthesis and characterization of dendritic star poly(l-lactide)s. Polym Bull 58:767–775

    CAS  Google Scholar 

  28. Lehermeier HJ, Dorgan JR (2001) Melt rheology of poly(lactic acid): consequences of blending chain architectures. Polym Eng Sci 41:2172–2184

    CAS  Google Scholar 

  29. Heyrovska R (2008) Atomic structures of graphene, benzene and methane with bond lengths as sums of the single, double and resonance bond radii of carbon. Cornell University Library, USA

    Google Scholar 

  30. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Google Scholar 

  31. Hull AW (1917) A new method of X-ray crystal analysis. Phys Rev 10:661

    CAS  Google Scholar 

  32. Bernal JD (1924) The structure of graphite. Proc R Soc Lond A106:749–773

    Google Scholar 

  33. Boehm HP, Clauss A, Fischer G, Hofmann U (1962) In: Proceedings of the Fifth Conference on Carbon, Pergamon Press

  34. DiVincenzo DP, Mele EJ (1984) Self-consistent effective mass theory for intralayer screening in graphite intercalation compounds. Phys Rev B 295:1685

    Google Scholar 

  35. Oshima C, Nagashima A (1997) Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J Phys Condens Matter 9:1

    CAS  Google Scholar 

  36. Novoselov KS et al (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197–200

    CAS  Google Scholar 

  37. Gusynin VP, Sharapov SG (2005) Unconventional integer quantum Hall effect in graphene. Phys Rev Lett 9:146801

    Google Scholar 

  38. Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204

    CAS  Google Scholar 

  39. Meyer J et al (2007) The structure of suspended graphene sheets. Nature 446:60–63

    CAS  Google Scholar 

  40. Geim AK, Kim P (2008) Carbon wonderland. Sci Amer 298:90–97

    CAS  Google Scholar 

  41. The Nobel Prize in Physics 2010. Nobelprize.org. Nobel Media AB 2014. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010. Retrieved 25 Jan 2015

  42. Li J-L, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Oxygen-driven unzipping of graphitic materials. Phys Rev Lett 96:176101

    Google Scholar 

  43. Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4:6557–6564

    CAS  Google Scholar 

  44. Mahanta NK, Abramson AR (2012) Thermal conductivity of graphene and graphene oxide nanoplatelets. Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) 2012 13th IEEE Intersociety Conference on 2012, pp 1–6

  45. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1:403–408

    CAS  Google Scholar 

  46. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105

    CAS  Google Scholar 

  47. Afanasov IM, Morozov VA, Kepman AV, Ionov SG, Seleznev AN, Tendeloo GV, Avdeev VV (2009) Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon 47:263–270

    CAS  Google Scholar 

  48. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Sci 320:1308

    CAS  Google Scholar 

  49. Ma X, Tao H, Yang K, Feng L, Cheng L, Shi X, Li Y, Guo L, Liu Z (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy and magnetic resonance imaging. Nano Res 5:199–212

    CAS  Google Scholar 

  50. Shen A-J, Li D-L, Cai X-J, Dong C-Y, Dong H-Q, Wen H-Y, Dai G-H, Wang P-J, Li Y-Y (2012) Multifunctional nanocomposite based on graphene oxide for in vitro hepatocarcinoma diagnosis and treatment. J Biomed Mater Res A 100A:2499–2506

    CAS  Google Scholar 

  51. Goenka S, Sant V, Sant S (2014) Graphene-based nanomaterials for drug delivery and tissue engineering. J Controll Release 173:75–88

    CAS  Google Scholar 

  52. Hsieh C-T, Chen WY (2011) Water/oil repellency and work of adhesion of liquid droplets on graphene oxide and graphene surfaces. Surf Coat Technol 205:4554–4561

    CAS  Google Scholar 

  53. Hasan SA, Rigueur JL, Harl RR, Krejci AJ, Gonzalo-Juan I, Rogers BR, Dickerson JH (2010) Transferable graphene oxide films with tunable microstructures. ACS Nano 4:7367–7372

    CAS  Google Scholar 

  54. Yang S-T, Chang Y, Wang H, Liu G, Chen S, Wang Y, Liu Y, Cao A (2010) Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci 351:122–127

    CAS  Google Scholar 

  55. Cote LJ, Kim F, Huang J (2008) Langmuir–Blodgett assembly of graphite oxide single layers. J Am Chem Soc 131:1043–1049

    Google Scholar 

  56. Segal M (2009) Selling graphene by the ton. Nat Nanotech 4:612–614

    CAS  Google Scholar 

  57. EUROPA-PRESS RELEASES. Graphene and Human Brain Project win largest research excellence award in history, as battle for sustained science funding continues. Europa.eu 28-01-2013

  58. Xuan Y, Wu YQ, Shen T et al (2006) Atomic-layer graphene gilms. Phys Rev Lett 97:036803–036806

    Google Scholar 

  59. Liang X (2014) Ch. 19: Transition from tubes to sheets—a comparison of the properties and applications of carbon nanotubes and graphene. Nanotube superfiber materials: changing engineering design. pp 519–68

  60. Yang XM, Tu YF, Li L et al (2010) Well-dispersed chitosan/graphene oxide nanocomposites. ACS Appl Mater Interfaces 2:1707–1713

    CAS  Google Scholar 

  61. Fan HL, Wang LL, Zhao KK et al (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351

    CAS  Google Scholar 

  62. Bai H, Li C, Wang XL et al (2010) A pH-sensitive graphene oxide composite hydrogel. Chem Commun 46:2376–2378

    CAS  Google Scholar 

  63. Sun ST, Wu PY (2011) A one-step strategy for thermal- and pH-responsive graphene oxide interpenetrating polymer hydrogel networks. J Mater Chem 21:4095–4097

    CAS  Google Scholar 

  64. Liu C, Alwarappan S, Chen ZF et al (2010) Membraneless enzymatic biofuel cells based on graphene nanosheets. Biosens Bioelectron 25:1829–1833

    CAS  Google Scholar 

  65. Stoller MD, Park S, Zhu YW et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    CAS  Google Scholar 

  66. Wang L, Lee K, Sun YY et al (2009) Graphene oxide as an ideal substrate for hydrogen storage. ACS Nano 121:4879–4881

    Google Scholar 

  67. Goli P, Legedza S, Dhar A, Salgado R, Renteria J, Balandin AA (2014) Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. J Power Sources 248:37–43

    CAS  Google Scholar 

  68. Lu CH, Yang HH, Zhu CL et al (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 121:4879–4881

    Google Scholar 

  69. Zhu L, Jia Y, Gai G, Ji X, Luo J, Yao Y (2014) Ambipolarity of large-area Pt-functionalized graphene observed in H2 sensing. Sens Actuators B Chem 190:134–140

    CAS  Google Scholar 

  70. Qu LT, Liu Y, Baek JB et al (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326

    CAS  Google Scholar 

  71. Wang H, Yuan X, Wu Y, Huang H, Peng X et al (2013) Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and waste gas and hydrogen storage/generation. Adv Colloid Interface Sci 195–196:19–40

    Google Scholar 

  72. Ji Z, Shen X, Yang J, Zhu G, Chen K (2014) A novel reduced graphene oxide/Ag/CeO2 ternary nanocomposite: green synthesis and catalytic properties. Appl Catal B 144:454–461

    CAS  Google Scholar 

  73. Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877

    CAS  Google Scholar 

  74. Sun XM, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    CAS  Google Scholar 

  75. Loh KP, Bao QL, Eda G et al (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015–1024

    CAS  Google Scholar 

  76. Jing W, Yin-song W, Xiao-ying Y, Yuan-yuan I, Jin-rong Y, Rui Y, Ning Z (2012) Graphene oxide used a carrier for adriamycin can reverse drug resistance in breast cancer cells. Nanotech 23:355101

    Google Scholar 

  77. Yang ZR, Wang HF, Zhao J et al (2007) Recent developments in the use of adenoviruses and immunotoxins in cancer gene therapy. Cancer Gene Ther 14:599–615

    CAS  Google Scholar 

  78. Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2:283–294

    CAS  Google Scholar 

  79. Zhang L, Lu Z, Zhao Q, Huang J, Shen H, Zhang Z (2011) Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7:460–464

    CAS  Google Scholar 

  80. Chen B, Liu M, Zhang L, Huang J, Yao J, Zhang Z (2011) Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J Mater Chem 21:7736–7741

    CAS  Google Scholar 

  81. Feng L, Zhang S, Liu Z (2011) Graphene based gene transfection. Nanoscale 3:1252–1257

    CAS  Google Scholar 

  82. Kim H, Namgung R, Singha K, Oh I-K, Kim WJ (2011) Graphene oxide-polyethylenimine nanoconstruct as a gene delivery vector and bioimaging tool. Bioconjug Chem 22:2558–2567

    CAS  Google Scholar 

  83. Bao HQ, Pan YZ, Ping Y et al (2011) Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7:1569–1578

    CAS  Google Scholar 

  84. Shen H, Liu M, He H, Zhang L, Huang J, Chong Y, Dai J, Zhang Z (2012) PEGylated graphene oxide-mediated protein delivery for cell function regulation. ACS Appl Mat Interfaces 4:6317–6323

    CAS  Google Scholar 

  85. Somani PR, Somani SP, Umeno M (2006) Planer nano-graphenes from camphor by CVD. Chem Phys Lett 430:56–59

    CAS  Google Scholar 

  86. Kim KS, Zhao Y, Jang H, Lee YS, Kim JM et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nat 457:706–710

    CAS  Google Scholar 

  87. Li X, Cai W, An J, Kim S, Nah J, Yang D et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Sci 324:1312–1314

    CAS  Google Scholar 

  88. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V et al (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35

    Google Scholar 

  89. Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271

    CAS  Google Scholar 

  90. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G (2009) Synthesis of N-doped graphene by chemical vapour deposition and its electrical properties. Nano Lett 9:1752–1758

    CAS  Google Scholar 

  91. Reddy ALM, Srivasta A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery applications. ACS Nano 4:6337–6342

    CAS  Google Scholar 

  92. Terasawa T, Saiki K (2012) Growth of graphene on Cu by plasma enhanced chemical vapour deposition. Carbon 50:869–874

    CAS  Google Scholar 

  93. Sutter P (2009) Epitaxial graphene: how silicon leaves the scene. Nat Mater 8:171–172

    CAS  Google Scholar 

  94. Patterned thin film graphite devices and method for making same. US Patern 7015142

  95. Moon JS et al (2009) Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates. IEEE Electro Device Lett 30:650–652

    CAS  Google Scholar 

  96. Kedzierski J et al (2008) Epitaxial graphene transistors on Sic substrates. IEEE Trans Electron Devices 55:2078–2085

    CAS  Google Scholar 

  97. Parga ALVD, Calleja F, Borca BMCG, Passeggi J, Hinarejos JJ, Guinea F et al (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100:056807

    Google Scholar 

  98. Pletikosić I, Kralj M, Brako R, Coraux J, N’Diaye AT, Busse C, Michely T (2009) Dirac cones and minigaps for graphene on Ir (1 1 1). Phys Rev Lett 102:056808

    Google Scholar 

  99. Rafiee J, Mi X, Gullapalli H, Thomas AV, Yayari F, Shi Y, Ajayan PM, Koratkar NA (2012) Wetting transparency of graphene. Nat Mater 11:217–222

    CAS  Google Scholar 

  100. Wassei JK, Mecklenburg M, Torres JA, Jesse DF, Regan BC, Richard BK, Bruce HW (2012) Chemical vapour deposition of graphene on copper from methane, ethane and propane: evidence for bilayer selectivity. Small 8:1415–1422

    CAS  Google Scholar 

  101. Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nat 468:549–552

    CAS  Google Scholar 

  102. Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2013) Evolution from graphite to graphene elastomer composites. Prog Polym Sci. doi:10.1016/j.progpolymsci.2013.08.003

  103. Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interf Sci 410:43–51

    CAS  Google Scholar 

  104. Zhou K, Shi Y, Jiang S, Song L, Hu Y, Ghui Z (2013) A facile liquid exfoliation method to prepare graphene sheets with different sizes expandable graphite. Mater Res Bull 48:2985–2992

    CAS  Google Scholar 

  105. Terrones M, Botello-Méndez AR, Campos-Delgado J, López-Urías F, Vega-Cantú YI et al (2010) Graphene and graphite nanoribbons: morphology, properties, synthesis, defects and applications. Nanotoday 5:351–372

    Google Scholar 

  106. Chakrabarti A, Lu J, Sakrabutenas JC, Xu T, Xiao Z, Maquire JA, Hosmane NS (2011) Conversion of carbon dioxide to few-layer graphene. J Mater Chem 21:9491–9493

    CAS  Google Scholar 

  107. Zhao WF, Fang M, Wu H, Wang LW, Chen GH (2010) Preparation of graphene by exfoliation of graphite using wet ball milling. J Mater Chem 20:5817–5819

    CAS  Google Scholar 

  108. Leon V, Quintana M, Herrero MA, Fierro JLG, de la Hoz A, Prato M et al (2011) Few-layer graphenes from ball-milling of graphite with melamine. Chem Commun 47:10936–10938

    CAS  Google Scholar 

  109. Zhao WF, Wu FE, Wu H, Chen GH (2010) Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J Nanometer. doi:10.1155/2010/528235

  110. Pu NW, Wang CA, Sung Y, Liu YM, Ger MD (2009) Production of few-layer graphene by supercritical CO(2) exfoliation of graphite. Mater Lett 63:1987–1989

    CAS  Google Scholar 

  111. Rangappa D, Sone K, Wang MS, Gautam UK, Goldberg D, Itoh H et al (2010) Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chem Eur J 16:6488–6494

    CAS  Google Scholar 

  112. Sim HS, Kim TA, Lee KH, Park M (2012) Preparation of graphene nanosheets through repeated supercritical carbon dioxide process. Mater Lett 89:343–346

    CAS  Google Scholar 

  113. Hummers WS Jr, Offeman RE (1957) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Google Scholar 

  114. Achaby ME, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide-PVDF nanocomposite films. Appl Surf Sci 258:7668–7677

    Google Scholar 

  115. Parades JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Graphene oxide dispersion in organic solvent. Langmuir 24:10560–10564

    Google Scholar 

  116. Chen D, Zhu H, Liu T (2010) In situ thermal preparation of polyimide nanocomposite films containing functionalized graphene sheets. ACS Appl Mater Interfaces 2:3702–3708

    CAS  Google Scholar 

  117. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50:3210–3228

    CAS  Google Scholar 

  118. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol 3:270–274

    CAS  Google Scholar 

  119. Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M et al (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3449–3503

    Google Scholar 

  120. Lee C-G, Park S, Ruoff RS, Dodabalapor A (2009) Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl Phys Lett 95:023304

    Google Scholar 

  121. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with aliphatic amines and amino acids. Langmuir 19:6050–6055

    CAS  Google Scholar 

  122. Shin H-J, Kim KK, Benayad A, Yoon S-M, Park HK, Jung I-S et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992

    CAS  Google Scholar 

  123. Fernández-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solís-Fernández P, Martínez-Alonso A, Tascón JMD (2010) Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem 114:6426–6432

    Google Scholar 

  124. Gao J, Liu F, Liu Y, Ma N, Wang Z, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218

    CAS  Google Scholar 

  125. Guo H, Peng M, Zhu Z, Sun L (2013) Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction. Nanoscale 5:9040–9048

    CAS  Google Scholar 

  126. Williams G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487–1491

    CAS  Google Scholar 

  127. Williams G, Kamat PV (2009) Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25:13869–13873

    CAS  Google Scholar 

  128. Cote LJ, Cruz-Silva R, Huang J (2009) Fush reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032

    CAS  Google Scholar 

  129. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS (2010) Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 48:2118–2122

    CAS  Google Scholar 

  130. Wakeland S, Martinez R, Grey JK, Luhrs CC (2010) Production of graphene from graphite oxide using urea as expansion-reducing agent. Carbon 48:3463–3470

    CAS  Google Scholar 

  131. Jin J, Fu X, Liu Q, Liu Y, Wei Z, Niu K, Zhang J (2013) Identifying the active site in nitrogen-doped graphene for the VO2+/VO2 + redox reaction. ACS Nano 7:4764–4773

    CAS  Google Scholar 

  132. Roy N, Sengupta R, Bhowmick A (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37:781–819

    CAS  Google Scholar 

  133. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: a review. Compos Sci Tecnol 72:1459–1476

    CAS  Google Scholar 

  134. Zhang HB, Zheng WG, Yan Q, Yang Y, Wang J, Lu ZH et al (2010) Electrically, conductive polyethylene terephthalate/graphene nanocomposites prepared by melt blending. Polymer 51:1191–1196

    CAS  Google Scholar 

  135. Huang Y, Qin Y, Zhou Y, Niu H, Yu Z-Z, Dong J-Y (2010) Poly propylene/graphene oxide nanocomposites prepared by in situ Ziegler–Natta polymerization. Chem Matter 22:4096–4102

    CAS  Google Scholar 

  136. Fim FDC, Guterres JM, Basso NRS, Galland GB (2010) Polyethylene/graphite nanocomposites obtained by in situ polymerization. J Polym Sci Part A Polym Chem 48:692–698

    CAS  Google Scholar 

  137. Jang JY, Kim MS, Jeong HM, Shin CM (2009) Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol 69:186–191

    CAS  Google Scholar 

  138. Yang J-H, Lin S-H, Lee Y-D (2012) Preparation and characterization of poly(L-lactide)-graphene composites using the in situ ring-opening polymerization of PLLA with graphene as the initiator. J Mater Chem 22:10805

    CAS  Google Scholar 

  139. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    CAS  Google Scholar 

  140. Li W, Xu Z, Chen L, Shan M, Tian X et al (2014) A facile method to produce graphene oxide-g-poly(l-lactic acid) as an promising reinforcement for PLLA nanocomposites. Chem Eng J 237:291–299

    CAS  Google Scholar 

  141. Achmad F, Yamane K, Quan S, Kokugan T (2009) Synthesis of polylactic acid by direct polycondensation under vacuum without catalysts, solvents and initiators. Chem Eng J 151:342–350

    CAS  Google Scholar 

  142. Song W, Zheng Z, Tang W, Wang X (2007) A facile approach to covalently functionalized carbon nanotubes with biocompatible polymer. Polymer 48:3658–3663

    CAS  Google Scholar 

  143. Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical and electrical properties of poly(lactic acid). Polym Adv Technol 20:631–638

    CAS  Google Scholar 

  144. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA et al (2006) Graphene-based composite materials. Nature 442:282–286

    CAS  Google Scholar 

  145. Lee WD, Im SS (2007) Thermomechanical properties and crystallization behavior of layered double hydroxide hydroxide/poly(ethylene terephthalate) nanocomposites prepared by in situ polymerization. J Polym Sci Part B Polym Phys 45:28–40

    CAS  Google Scholar 

  146. Sing VK, Shukla A, Patra MK, Saini L, Jani RK, Vadera SR, Kumar N (2012) Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50:2022–2028

    Google Scholar 

  147. Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839

    Google Scholar 

  148. Wang H, Qiu Z (2011) Crystallization behaviours biodegradable poly(l-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526:229–236

    CAS  Google Scholar 

  149. Yoon OJ, Jung CY, Sohn IY, Kim HJ, Hong B et al (2011) Nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos Part A 42:1978–1984

    Google Scholar 

  150. Pinto AM, Moreira S, Gonҫalves IC, Gama FM, Mendes AM, Magalhães FD (2013) Biocompatibility of poly(lactic acid) with incorporated graphene-based materials. Colloids Surf B Biointerfaces 104:229–238

    CAS  Google Scholar 

  151. Murariu M, Dechief AL, Bonnaud L, Paint Y, Gallos A, Fontaine G et al (2010) The production and properties of polylactide composites filled with expanded graphite. Polym Degrad Stab 95:889–900

    CAS  Google Scholar 

  152. Hassouna F, Laachachi A, Chapron D, Moedden YE, Toniazzo V, Ruch D (2011) Development of new approach based on Raman spectroscopy to study the dispersion of expanded graphite in poly(lactide). Polym Degrad Stab 96:2040–2047

    CAS  Google Scholar 

  153. Antar Z, Feller JF, Noël H, Glouannec P, Elleuch K (2012) Thermoelectric behaviour of melt processed carbon nanotube/graphite/poly(lactic acid) conductive biopolymer nanocomposites (CPC). Mater Lett 67:210–214

    CAS  Google Scholar 

  154. Kim IH, Jeong YG (2010) Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity. J Polym Sci Part B Polym Phys 48:850–858

    CAS  Google Scholar 

  155. Lei L, Qiu J, Sakai E (2012) Preparing conductive poly(lactic acid)(PLA) with poly(methyl methacrylate)(PMMA) functionalized graphene (PFG) by admicellar polymerization. Chem Eng J 209:20–27

    CAS  Google Scholar 

  156. Yooprasert N, Pongprayoon T, Suwanmala P, Hemvichian K, Tumcharem G (2010) Radiation-induced admicellar polymerization of isoprene on silica: effects of surfactant’s chain length. Chem Eng J 156:193–199

    CAS  Google Scholar 

  157. Maity J, Kothary P, O’Rear EA, Jacob C (2010) Preparation and comparison of hydrophobic cotton fabric obtained by direct fluorination and admicellar polymerization of fluoromonomers. Ind Eng Chem Res 49:6075–6079

    CAS  Google Scholar 

  158. Das S, Wajid AS, Shelburne JL, Liao YC, Green MJ (2011) Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions. ACS Appl Mater Interfaces 3:1844–1851

    CAS  Google Scholar 

  159. Wang X, Song L, Yang YH, Xing WY, Lu HD, Hu Y (2012) Cobalt oxide/graphene composite for highly efficient CO oxidation and its application in reducing the fire hazards of aliphatic polyesters. J Mater Chem 22:3426–3431

    CAS  Google Scholar 

  160. Xie X, Li Y, Liu ZQ, Haruta M, Shen W (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749

    CAS  Google Scholar 

  161. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties and applications. Adv Mater 22:3906–3924

    CAS  Google Scholar 

  162. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    CAS  Google Scholar 

  163. Huang KJ, Niu DJ, Sun JY, Han CH, Wu ZW, Li YL et al (2010) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B Biointerfaces 82:543–549

    Google Scholar 

  164. Ang PK, Jaiswal M, Lim CH, Wang Y, Sankaran J, Li A et al (2010) A bioelectronic platform using a graphene–lipid bilayer interface. ACS Nano 4:7387–7394

    CAS  Google Scholar 

  165. Ryoo SR, Kim YK, Kim MH, Min DH (2010) Behaviors of NIH-3T3 Fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion and gene transfection studies. ACS Nano 4:6587–6598

    CAS  Google Scholar 

  166. Fukushima H, Drzal LT, Rook BP, Rich MJ (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85:235–238

    CAS  Google Scholar 

  167. Cancadoa LG, Takaia K, Enokia T, Endob M, Kimb Y, Mizusakib H et al (2008) Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon 46:272–275

    Google Scholar 

  168. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    CAS  Google Scholar 

  169. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M et al (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. PNAS 103:3357–3362

    CAS  Google Scholar 

  170. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    CAS  Google Scholar 

  171. Yoon OJ, Kim HW, Kim DJ, Lee HJ, Yun JY, Noh YH et al (2009) Nanocomposites of electrospun poly(d, l-lactic)-co-(glycolic acid) and plasma-functionalized single-walled carbon nanotubes for biomedical applications. Plasma Process Polym 6:101–109

    CAS  Google Scholar 

  172. Chen C, Liang B, Lu D, Ogino A, Wang X, Nagatsu M (2010) Amino group introduction onto multiwall carbon nanotubes by NH3/Ar plasma treatment. Carbon 48:939–948

    CAS  Google Scholar 

  173. Xu J, Chen T, Yang C, Li Z, Mao Y et al (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: a comparative study. Macromolecules 43:5000–5008

    CAS  Google Scholar 

  174. Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310

    CAS  Google Scholar 

  175. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    CAS  Google Scholar 

  176. Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Comp Sci Tech 63:1317–1324

    CAS  Google Scholar 

  177. Ljungberg N, Andersson T, Wesslen B (2003) Film extrusion and film weldability of poly(lactic acid) plasticized with triacetin and tributyl citrate. J Appl Polym Sci 88:3239–3247

    CAS  Google Scholar 

  178. Ljungberg N, Wesslen B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796

    CAS  Google Scholar 

  179. Ljungberg N, Wesslen B (2003) Tributyl citrate oligomers as plasticizers for poly(lactic acid): thermo-mechanical film properties and aging. Polymer 44:7679–7688

    CAS  Google Scholar 

  180. Murariu M, Ferreira ADS, Pluta M et al (2008) Polylactide (PLA)–CaSO4 composites toughened with low molecular weight and polymeric-ester like plasticizers and related performances. Euro Polym J 44:3842–3852

    CAS  Google Scholar 

  181. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethene glycol). Polymer 44:5681–5689

    CAS  Google Scholar 

  182. Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E (2003) Ageing of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer 44:5701–5710

    CAS  Google Scholar 

  183. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M (2006) Plasticization of poly(lactide) with poly(propylene glycol). Biomacromolecules 7:2128–2135

    CAS  Google Scholar 

  184. Focarete ML, Scandola M, Dobrzynski MS, Kowalczuk M (2002) Miscibility and mechanical properties of blends of (l)-lactide copolymers with atactic poly(3-hydroxybutyrate). Macromolecules 35:8472–8477

    Google Scholar 

  185. Choi K-M, Choi M-C, Han D-H et al (2013) Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Euro Polym J 49:2356–2364

    CAS  Google Scholar 

  186. Chieng BW, Ibrahim N, Yunus WMZW et al (2014) Effects of graphene nanoplatelets and reduced graphene oxide on poly(lactic acid) and plasticized poly(lactic acid): a comparison study. Polymers 6:2232–2246

    Google Scholar 

  187. Chieng BW, Ibrahim N, Yunus WMZW, Hussein MZ (2014) Poly(lactic acid)/poly(ethylene glycol) polymer nanocomposites: effects of graphene nanoplatelets. Polymers 6:93–104

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Norazlina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Norazlina, H., Kamal, Y. Graphene modifications in polylactic acid nanocomposites: a review. Polym. Bull. 72, 931–961 (2015). https://doi.org/10.1007/s00289-015-1308-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1308-5

Keywords

Navigation