Skip to main content

Advertisement

Log in

Blend microspheres of chitosan and polyurethane for controlled release of water-soluble antihypertensitive drugs

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Blend microspheres of chitosan and polyurethane (PU) have been prepared by water-in-oil emulsion cross-linking method and used to encapsulate two water-soluble and having widely different plasma half-life cardiovascular drugs, viz., isoxsuprine hydrochloride and calcium dobesilate. The blend miscibility of the polymers was confirmed by differential scanning calorimetry at >60 wt% of PU. The microspheres were characterized by scanning electron microscopy to understand the morphology of the drug-loaded microspheres. Chemical interactions between drug molecules and the carrier polymers have been investigated by Fourier transform spectroscopy. XRD measurements on placebo matrices, drug-loaded formulations and nascent drugs indicated their uniform dispersion in the polymer matrix. In vitro release experiments performed in both acidic pH of 1.2 and alkaline pH of 7.4 increased the release time of both the drugs in the media employed. Kinetics of drug release was analyzed by empirical equation, suggesting the deviation from Fickian transport to non-Fickian trend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liu Y, Messmer MC (2003) Structures and segregation of polystyrene/poly(methyl methacrylate) blends studied by sum-frequency (SF) spectroscopy.  J Phys Chem B 107:9774

    Article  CAS  Google Scholar 

  2. Zhang X, Kale DM, Jenekhe SA (2002) Electroluminescence of multicomponent conjugated polymers. 2. Photophysics and enhancement of electroluminescence from blends of polyquinolines. Macromolecules 35:382

    Article  CAS  Google Scholar 

  3. Radhakrishnan J, Tanigaki N, Kaito A (1999) Electronic energy transfer in compatible blends of poly(di-n-hexylsilane) and poly(methyl-n-propylsilane). Polymer 40:1381

    Article  CAS  Google Scholar 

  4. Kurkuri MD, Nayak JN, Aralaguppi MI, Naidu BVK, Aminabhavi TM (2005) Sorption/diffusion of aqueous mixtures of 1,4-dioxane/tetrahydrofuran through blend membranes of poly(vinyl alcohol) and sodium alginate: their compatibility and pervaporation separation studies. J Appl Polym Sci 98:178

    Article  CAS  Google Scholar 

  5. Siepmann F, Siepmann J, Walther M, MacRae RJ, Bodmeier R (2008) Polymer blends for controlled release coatings. J Control Release 125:1

    Article  CAS  Google Scholar 

  6. Karavas E, Georgarakis E, Bikiaris D (2006) Application of PVP/HPMC miscible blends with enhanced mucoadhesive properties for adjusting drug release in predictable pulsatile chronotherapeutics. Eur J Pharm Biopharm 64:115

    Article  CAS  Google Scholar 

  7. Kerres J, Ullrich A, Meier F, Häring T (1999) Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells. Solid State Ionics 125:243

    Article  CAS  Google Scholar 

  8. Manea C, Mulder M (2002) Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications. J Membr Sci 206:443

    Article  CAS  Google Scholar 

  9. Kalyani S, Smitha B, Sridhar S, Krishnaiah A (2006) Blend membranes of sodium alginate and hydroxyethylcellulose for pervaporation-based enrichment of t-butyl alcohol. Carbohydr Polym 64:425

    Article  CAS  Google Scholar 

  10. Bergera J, Reista M, Mayera JM, Feltb O, Peppasc NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. J Pharm Biopharm 57:19

    Article  Google Scholar 

  11. Aminabhavi TM, Rudzinski WE (2010) Chitosan as a carrier for targeted delivery of small interfering RNA. Int J Pharm 399:1

    Article  Google Scholar 

  12. Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C (2012) Microencapsulated chitosan nanoparticles for pulmonary protein delivery: in vivo evaluation of insulin-loaded formulations. J Control Release 157:383

    Article  CAS  Google Scholar 

  13. Park JH, Saravanakumar G, Kim K, Kwon IC (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Del Rev 62:28

    Article  CAS  Google Scholar 

  14. Kim TH, Jiang HL, Jere D, Park IK, Cho MH, Nah JW, Choi YJ, Akaike T, Cho CS (2007) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Progr Polym Sci 32:726

    Article  CAS  Google Scholar 

  15. Prabaharan M (2008) Chitosan derivatives as promising materials for controlled drug delivery. J Biomater Appl 23:5

    Article  CAS  Google Scholar 

  16. Kidane AG, Burriesci G, Edirisinghe M, Ghanbari H, Bonhoeffer P, Seifalian AM (2009) A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater 5:2409

    Article  CAS  Google Scholar 

  17. Xue L, Greisler HPJ (2003) Biomaterials in the development and future of vascular grafts. Vasc Surg 37:472

    Article  Google Scholar 

  18. Rosenheck S, Sharon Z, Leibowitz D (2000) Artifacts recorded through failing bipolar polyurethane insulated permanent pacing leads. Europace 2:60

    Article  CAS  Google Scholar 

  19. Lawrence EL, Turner IG (2005) Materials for urinary catheters: a review of their history and development in the UK. Med Eng Phys 27:443

    Article  CAS  Google Scholar 

  20. Yang MJ, Den XY, Zhang Z, Julien M, Pelletier F, Desaulniers D, Cossette R, Teijeira FJ, Laroche G, Guidoin R (1997) Are intraaortic balloons suitable for reuse? A survey study of 112 used intraaortic balloons. Artif Organs 21:121

    Article  CAS  Google Scholar 

  21. Ghosh B, Urban MW (2009) Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323:1458

    Article  CAS  Google Scholar 

  22. Gisselfalt K, Edberg B, Flodin P (2002) Synthesis and properties of degradable poly(urethane urea)s to be used for ligament reconstructions. Biomacromolecules 3:951

    Article  CAS  Google Scholar 

  23. Zhang CH, Wen XJ, Vyavahare NR, Boland T (2008) Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique. Biomaterials 29:3781

    Article  CAS  Google Scholar 

  24. Adhikari R, Gunatillake PA, Griffiths I, Tatai L, Wickramaratna M, Houshyar S, Moore T, Mayadunne RTM, Field J, Mcgee M, Carbone T (2008) Biodegradable injectable polyurethanes: synthesis and evaluation for orthopaedic applications. Biomaterials 29:3762

    Article  CAS  Google Scholar 

  25. Kang WM, Cheng BW, Li QX, Zuo FF (2010) Novel antibacterial nanofibers of chitosan and polyurethane prepared by electrospinning. Adv Mat Res 150–151:1452

    Article  Google Scholar 

  26. Lijuan Z, Lunquan Y, Mingming D, Jiehua L, Hong T, Zhigao W, Qiang F (2011) Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules 44:857

    Article  Google Scholar 

  27. Okada M (2002) Chemical syntheses of biodegradable polymers. Prog Polym Sci 27:87

    Article  CAS  Google Scholar 

  28. Zhang JN, Wu MY, Yang JJ, Wu QY, Jin ZL (2009) Anionic poly (lactic acid)-polyurethane micelles as potential biodegradable drug delivery carriers. Colloids Surf A 337:200

    Article  CAS  Google Scholar 

  29. Shelke NB, Sairam M, Halligudi SB, Aminabhavi TM (2007) Development of transdermal drug-delivery films with castor-oil-based polyurethanes. J Appl Polym Sci 103:779

    Article  CAS  Google Scholar 

  30. Shelke NB, Aminabhavi TM (2007) Synthesis and characterization of methoxypolyethyleneglycol and lauric acid grafted novel polyurethanes for controlled release of nifedipine. J Appl Polym Sci 105:2155

    Article  CAS  Google Scholar 

  31. Costa-Júnior ES, Barbosa-Stancioli EF, Mansur AAP, Vasconcelos WL, Mansur HS (2009) Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications. Carbohydr Polym 76:472

    Article  Google Scholar 

  32. Torre PMDL, Enobakhare, Torrado YG, Torrado S (2003) Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 24:1499

  33. Nafee N, Taetz S, Schneider M, Schaefer UF, Lehr CM (2007) Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomed Nanotechnol Biol Med 3:173

    Article  CAS  Google Scholar 

  34. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biolog Macromol 43:401

    Article  CAS  Google Scholar 

  35. Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N (2010) Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Progr Mater Sci 55:675

    Article  CAS  Google Scholar 

  36. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1

    Article  CAS  Google Scholar 

  37. Kumbar SG, Kulkarni AR, Aminabhavi TM (2002) Crosslinked chitosan microspheres for encapsulation of diclofenac sodium: effect of crosslinking agent. J Microencapsul 19:173

    Article  CAS  Google Scholar 

  38. Ramesh Babu V, Hosamani KM, Aminabhavi TM (2008) Preparation and in-vitro release of chlorothiazide novel pH-sensitive chitosan-N,N'-dimethylacrylamide semi-interpenetrating network microspheres. Carbohydr Polym 71:208

    Article  Google Scholar 

  39. Reddy KM, Ramesh Babu V, Krishna Rao KSV, Subha MCS, Chowdoji Rao K, Sairam M, Aminabhavi TM (2008) Temperature sensitive semi-IPN microspheres from sodium alginate and N-isopropylacrylamide for controlled release of 5-fluorouracil. J Appl Polym Sci 107:2820–2829

    Article  CAS  Google Scholar 

  40. Rokhade AP, Kulkarni PV, Mallikarjuna NN, Aminabhavi TM (2009) Preparation and characterization of novel semi-interpenetrating polymer network hydrogel microspheres of chitosan and hydroxypropyl cellulose for controlled release of chlorothiazide. J Microencapsul 26:27–36

    Article  CAS  Google Scholar 

  41. Sullad AG, Manjeshwar LS, Aminabhavi TM (2010) Polymeric blend microspheres for controlled release of theophylline. J Appl Polym Sci 117:1361–1370

    CAS  Google Scholar 

  42. NTP (1999) Toxicology and carcinogenesis studies of glutaraldehyde (CAS No. 111-30-8) in F344/N rats and B6C3F1mice (inhalation studies). Natl Toxicol Progr Tech Rep Ser 490:1

    Google Scholar 

  43. Dhawan S, Singla AK, Sinha VR (2004) Evaluation of mucoadhesive properties of chitosan microspheres prepared by different methods. AAPS Pharm Sci Tech 5:1–7

    Article  Google Scholar 

  44. Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Semi-interpenetrating polymer network hydrogel blend microspheres of gelatin and hydroxyethyl cellulose for controlled release of theophylline. Ind Eng Chem Res 50:7833–7840

    Article  CAS  Google Scholar 

  45. Sullad AG, Manjeshwar LS, Aminabhavi TM (2010) Controlled release of theophylline from interpenetrating blend microspheres of poly(vinyl alcohol) and methyl cellulose. J Appl Polym Sci 116:1226–1235

    CAS  Google Scholar 

  46. Luo K, Yin J, Khutoryanskaya OV, Khutoryanskiy VV (2008) Mucoadhesive and elastic films based on blends of chitosan and hydroxyethylcellulose. Macromol Biosci 8:184–192

    Article  CAS  Google Scholar 

  47. He P, Davis SS, Illum L (1999) Chitosan microspheres prepared by spray drying. Int J Pharm 187:53–65

    Article  CAS  Google Scholar 

  48. Al-Helw AA, Al-Angary AA, Mahrous GM, Al-Dardari MM (1998) Preparation and evaluation of sustained release cross-linked chitosan microspheres containing phenobarbitone. J Microencapsul 15:373–382

    Article  CAS  Google Scholar 

  49. Rokhade AP, Shelke NB, Patil SA, Aminabhavi TM (2007) Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydr Polym 69:678–687

    Article  CAS  Google Scholar 

  50. Ritger PL, Peppas NA (1987) A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Control Release 5:37–42

    Article  CAS  Google Scholar 

  51. Sullad AG, Manjeshwar LS, Aminabhavi TM (2010) Novel pH-sensitive hydrogels prepared from the blends of poly(vinyl alcohol with acrylic acid-graft-guar gum matrixes for isoniazid delivery. Ind Eng Chem Res 49:7323–7329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Miss. A. G. Sullad and Prof. L. S. Manjeshwar thank the University Grants Commission (UGC), New Delhi, India (KU/SCH/UGC/RFSMS/2008-09). Prof. T. M. Aminabhavi thanks the All India Council for Technical Education [AICTE, F.No. 1-51/RIFD/EF(13)/2011-12], New Delhi, India for the award of Emeritus Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata S. Manjeshwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullad, A.G., Manjeshwar, L.S. & Aminabhavi, T.M. Blend microspheres of chitosan and polyurethane for controlled release of water-soluble antihypertensitive drugs. Polym. Bull. 72, 265–280 (2015). https://doi.org/10.1007/s00289-014-1271-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1271-6

Keywords

Navigation