Skip to main content
Log in

Exfoliation of organic montmorillonite in iPP free of compatibilizer through the multistage stretching extrusion

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polypropylene (PP)/organic montmorillonite (OMMT) nanocomposites were first prepared through twin-screw extruder and then subjected to multistage stretching extrusion with an assembly of laminating-multiplying elements (LMEs, which divide and recombine polymer melts). The exfoliated efficiency of LMEs on OMMT dispersed in PP matrix was investigated by optical microscopy, scanning electron microscope, transmission electron microscopy and X-ray diffraction. Because of the absence of compatibilizer, molecular chains of PP were not intercalated into the galleries of OMMT during the multistage stretching extrusion. The exfoliation of OMMT was induced by the strong force occurred in LMEs, which can destruct van der Waal’s interaction between the laminate OMMT platelets. The exfoliation degree of OMMT has been improved with the increase of number of LMEs used. The dispersion morphology of OMMT was thermodynamically stable after secondary melt processing. As a result, the mechanical properties of composites have been enhanced with increasing LME number. We realized the exfoliation of OMMT by the function of strong shear field without the incorporation of compatibilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gaharwar AK, Schexnailder PJ, Dundigalla A, White JD, Matos-Pérez CR, Cloud JL, Seifert S, Wilker JJ, Schmidt G (2011) Highly extensible bio-nanocomposite fibers. Macromol Rapid Commun 32(1):50–57

    Article  CAS  Google Scholar 

  2. Rooj S, Das A, Stöckelhuber KW, Wang D-Y, Galiatsatos V, Heinrich G (2013) Understanding the reinforcing behavior of expanded clay particles in natural rubber compounds. Soft Matter 9(14):3798–3808

    Article  CAS  Google Scholar 

  3. Vijayan PP, Puglia D, Kenny JM, Thomas S (2013) Effect of organically modified nanoclay on the miscibility, rheology, morphology and properties of epoxy/carboxyl-terminated (butadiene-co-acrylonitrile) blend. Soft Matter 9(10):2899–2911

    Article  CAS  Google Scholar 

  4. Pujala RK, Bohidar H (2012) Ergodicity breaking and aging dynamics in laponite–montmorillonite mixed clay dispersions. Soft Matter 8(22):6120–6127

    Article  CAS  Google Scholar 

  5. Chen B, Evans JR (2009) Impact strength of polymer-clay nanocomposites. Soft Matter 5(19):3572–3584

    Article  CAS  Google Scholar 

  6. Tang Y, Hu Y, Song L, Zong R, Gui Z, Chen Z, Fan W (2003) Preparation and thermal stability of polypropylene/montmorillonite nanocomposites. Polym Degrad Stab 82(1):127–131

    Article  CAS  Google Scholar 

  7. Zehetmeyer G, Scheibel J, Soares R, Weibel D, Oviedo M, Oliveira R (2013) Morphological, optical, and barrier properties of PP/MMT nanocomposites. Polym Bull 70(8):2181–2191

    Article  CAS  Google Scholar 

  8. Lim S, Kim J, Chin I, Kwon Y, Choi H (2002) Preparation and interaction characteristics of organically modified montmorillonite nanocomposite with miscible polymer blend of poly (ethylene oxide) and poly (methyl methacrylate). Chem Mater 14(5):1989–1994

    Article  CAS  Google Scholar 

  9. Suter JL, Coveney PV (2009) Computer simulation study of the materials properties of intercalated and exfoliated poly (ethylene) glycol clay nanocomposites. Soft Matter 5(11):2239–2251

    Article  CAS  Google Scholar 

  10. Wang Y, Zhang Q, Fu Q (2003) Compatibilization of immiscible poly (propylene)/polystyrene blends using clay. Macromol Rapid Commun 24(3):231–235

    Article  CAS  Google Scholar 

  11. Sinha Ray S, Bousmina M (2005) Compatibilization efficiency of organoclay in an immiscible polycarbonate/poly (methyl methacrylate) blend. Macromol Rapid Commun 26(6):450–455

    Article  Google Scholar 

  12. Dong Y, Bhattacharyya D (2012) Investigation on the competing effects of clay dispersion and matrix plasticisation for polypropylene/clay nanocomposites. Part I: morphology and mechanical properties. J Mater Sci 47(8):3900–3912

    Article  CAS  Google Scholar 

  13. Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  14. Panwar A, Choudhary V, Sharma D (2013) Role of compatibilizer and processing method on the mechanical, thermal and barrier properties of polystyrene/organoclay nanocomposites. J Reinf Plast Compos 32(10):740–757

    Article  Google Scholar 

  15. He A, Wang L, Li J, Dong J, Han CC (2006) Preparation of exfoliated isotactic polypropylene/alkyl-triphenylphosphonium-modified montmorillonite nanocomposites via in situ intercalative polymerization. Polymer 47(6):1767–1771

    Article  CAS  Google Scholar 

  16. Liu X, Wu Q (2001) PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer 42(25):10013–10019

    Article  CAS  Google Scholar 

  17. Jiang G, Huang HX (2011) Melt-compounding of PP/clay nanocomposite and relationship between its microstructure and shear strain in the flow field based on rheological analysis. Polym Eng Sci 51(11):2345–2352

    Article  CAS  Google Scholar 

  18. Liu W, Liu B, Wang X (2013) Morphology, rheological properties, and crystallization behavior of polypropylene/clay nanocomposites. Int J Polym Mater 62(3):164–171

    Article  Google Scholar 

  19. Hong CH, Lee YB, Bae JW, Jho JY, Nam BU, Nam GJ, Lee KJ (2005) Tensile and flammability properties of polypropylene-based RTPO/clay nanocomposites for cable insulating material. J Appl Polym Sci 97(6):2375–2381

    Article  CAS  Google Scholar 

  20. Zhu S, Chen J, Zuo Y, Li H, Cao Y (2011) Montmorillonite/polypropylene nanocomposites: mechanical properties, crystallization and rheological behaviors. Appl Clay Sci 52(1):171–178

    Article  CAS  Google Scholar 

  21. Meng X, Wang Z, Yu H, Du X, Li S, Wang Y, Jiang Z, Wang Q, Tang T (2009) A strategy of fabricating exfoliated thermoplastic polyurethane/clay nanocomposites via introducing maleated polypropylene. Polymer 50(16):3997–4006

    Article  CAS  Google Scholar 

  22. Homminga D, Goderis B, Hoffman S, Reynaers H, Groeninckx G (2005) Influence of shear flow on the preparation of polymer layered silicate nanocomposites. Polymer 46(23):9941–9954

    Article  CAS  Google Scholar 

  23. Zhu L, Xanthos M (2004) Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J Appl Polym Sci 93(4):1891–1899

    Article  CAS  Google Scholar 

  24. Kubišová H, Měřínská D, Svoboda P (2010) PP/clay nanocomposite: optimization of mixing conditions with respect to mechanical properties. Polym Bull 65(5):533–541

    Article  Google Scholar 

  25. Xu S, Wen M, Li J, Guo S, Wang M, Du Q, Shen J, Zhang Y, Jiang S (2008) Structure and properties of electrically conducting composites consisting of alternating layers of pure polypropylene and polypropylene with a carbon black filler. Polymer 49(22):4861–4870

    Article  CAS  Google Scholar 

  26. Wen M, Sun X, Su L, Shen J, Li J, Guo S (2012) The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7):1602–1610

    Article  CAS  Google Scholar 

  27. Shen J, Wang M, Li J, Guo S (2011) In situ fibrillation of polyamide 6 in isotactic polypropylene occurring in the laminating-multiplying die. Polym Adv Technol 22(2):237–245

    Article  CAS  Google Scholar 

  28. Park JH, Jana SC (2003) Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules 36(8):2758–2768

    Article  CAS  Google Scholar 

  29. Fornes T, Yoon P, Keskkula H, Paul D (2001) Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42(25):09929–09940

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this subject by the National Natural Science Foundation of China (51227802, 51121001, 50933004 and 51073099), and the Ministry of Education Priority Funding Areas (20110181130004). We are also heavily indebted to Mr. Luo Yong from Analytical and Testing Center of Sichuan University for careful measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiang Li or Shaoyun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, F., Yang, S., Yang, M. et al. Exfoliation of organic montmorillonite in iPP free of compatibilizer through the multistage stretching extrusion. Polym. Bull. 71, 3261–3273 (2014). https://doi.org/10.1007/s00289-014-1254-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1254-7

Keywords

Navigation