Skip to main content
Log in

Thermal and mechanical properties of poly(lactic acid) modified by poly(ethylene glycol) acrylate through reactive blending

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) was modified using a simple reactive blending method, where a low molecular weight poly(ethylene glycol) acrylate (PEGA) was blended with PLA in the presence of a radical initiator. To examine the initiation effect on the modification of PLA, various amounts of radical initiator (between 0 and 1.5 %) were added to the PLA/PEG acrylate mixture. The modified PLAs (PLMs) were characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction, and solvent extraction. The properties of the PLMs were investigated using tensile testing, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, and hydrolytic degradable analysis. The PEGA significantly influenced the molecular structure and properties of the modified PLA. The glass transition temperature of the PLMs was decreased by approximately 15 °C (for PLM15) from 59.3 °C of PLA, whereas their toughness increased considerably compared to PLA. In addition, PEG acrylate facilitates hydrolytic degradation, even after radical polymerization by reactive blending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  2. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155

    Article  CAS  Google Scholar 

  3. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  4. Jamshidi K, Hyon S-H, Ikada Y (1988) Thermal characterization of polylactides. Polymer 29:2229–2234

    Article  CAS  Google Scholar 

  5. Mehta R, Kumar V, Bhunia H, Upadhyay SN (2005) Synthesis of poly(lactic acid): a review. J Macromol Sci Part C 45:325–349

    Article  Google Scholar 

  6. Drumright RE, Gruber PR, Henton DE (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  CAS  Google Scholar 

  7. Lunt J (1998) Large-scale production, properties and commercial applications of polylactic acid polymers. Polym Degrad Stab 59:145–152

    Article  CAS  Google Scholar 

  8. Gorrasi G, Anastasio R, Bassi L, Pantani R (2013) Barrier properties of PLA to water vapour: effect of temperature and morphology. Macromol Res 21:1110–1117

    Article  CAS  Google Scholar 

  9. Auras R, Harte B, Selke S, Hernandez R (2003) Mechanical, physical, and barrier properties of poly(lactide) films. J Plastic Film Sheeting 19:123–135

    Article  CAS  Google Scholar 

  10. Lehermeier HJ, Dorgan JR, Way JD (2001) Gas permeation properties of poly(lactic acid). J Membr Sci 190:243–251

    Article  CAS  Google Scholar 

  11. Conn RE, Kolstad JJ, Borzelleca JF, Dixler DS, Filer LJ Jr, LaDu BN (1995) Safety assessment of polylactide (PLA) for use as a food-contact polymer. Food Chem Toxicol 33:273–283

    Article  CAS  Google Scholar 

  12. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  CAS  Google Scholar 

  13. Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D (2011) New approach on the development of plasticized polylactide (PLA): grafting of poly(ethylene glycol) (PEG) via reactive extrusion. Eur Polym J 47:2134–2144

    Article  CAS  Google Scholar 

  14. Hassouna F, Raquez J-M, Addiego F, Dubois P, Toniazzo V, Ruch D (2012) New development on plasticized poly(lactide):chemical grafting of citrate on PLA by reactive extrusion. Eur Polym J 48:404–415

    Article  CAS  Google Scholar 

  15. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42:6209–6219

    Article  CAS  Google Scholar 

  16. Lui H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Polym Phys 49:1051–1083

    Google Scholar 

  17. Ljungberg N, Wesslén B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796

    Article  CAS  Google Scholar 

  18. Labrecque LV, Kumar RA, Davé V, Gross RA, Mccarthy SP (1997) Citrate esters as plasticizers for poly(lactic acid). J Appl Polym Sci 66:1507–1513

    Article  CAS  Google Scholar 

  19. Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310

    Article  CAS  Google Scholar 

  20. Ljungberg N, Andersson T, Wesslén B (2003) Film extrusion and filmweldability of poly(lactic acid) plasticized with triacetine and tributyl citrate. J Appl Polym Sci 88:3239–3247

    Article  CAS  Google Scholar 

  21. Ljungberg N, Wesslén B (2002) The effects of plasticizers on the dynamic mechanical and thermal properties of poly(lactic acid). J Polym Sci Polym Phys 86:1227–1234

    CAS  Google Scholar 

  22. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E (2003) Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer 44:5681–5689

    Article  CAS  Google Scholar 

  23. Hu Y, Topolkaraev V, Hiltner A, Baer E (2003) Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer 44:5701–5710

    Article  CAS  Google Scholar 

  24. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M (2006) Plasticization of poly(l-lactide) with poly(propylene glycol). Biomacromolecules 7:2128–2135

    Article  CAS  Google Scholar 

  25. Okamoto K, Ichikawa T, Yokohara T, Yamaguchi M (2009) Miscibility, mechanical and thermal properties of poly(lactic acid)/polyester-diol blends. Eur Polym J 45:2304–2312

    Article  CAS  Google Scholar 

  26. Ljungberg N, Wesslén B (2003) Tributyl citrate oligomers as plasticizers for poly (lactic acid): thermo-mechanical film properties and aging. Polymer 44:7679–7688

    Article  CAS  Google Scholar 

  27. Park JY, Hwang SY, Yoon WJ, Yoo ES, Im SS (2012) Compatibility and physical properties of poly(lactic acid)/poly(ethylene terephthalate glycol) blends. Macromol Res 20:1300–1306

    Article  CAS  Google Scholar 

  28. Cho SY, Park HH, Yun YS, Jin H-J (2013) Influence of cellulose nanofibers on the morphology and physical properties of poly(lactic acid) foaming by supercritical carbon dioxide. Macromol Res 21:529–533

    Article  CAS  Google Scholar 

  29. Yua L, Deana K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602

    Article  Google Scholar 

  30. Jun CL (2000) Reactive blending of biodegradable polymers: PLA and starch. J Polym Environ 8:33–37

    Article  Google Scholar 

  31. Liu H, Song W, Chen F, Guo L, Zhang J (2011) Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 44:1513–1522

    Article  CAS  Google Scholar 

  32. Chen Y, Yuan D, Xu C (2014) Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase. ACS Appl Mater Interfaces 6:3811–3816

    Article  CAS  Google Scholar 

  33. Coltelli M-B, Bronco S, Chinea C (2010) The effect of free radical reactions on structure and properties of poly(lactic acid) (PLA) based blends. Polym Degrad Stab 95:332–341

    Article  CAS  Google Scholar 

  34. Choi K, Choi M-C, Han D-H, Park T-S, Ha C-S (2013) Plasticization of poly(lactic acid) (PLA) through chemical grafting of poly(ethylene glycol) (PEG) via in situ reactive blending. Eur Polym J 49:2356–2364

    Article  CAS  Google Scholar 

  35. Migliaresi C, Cohn D, De Lollis A, Fambri L (1991) Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: effect of thermal treatments. J Appl Polym Sci 43:83–95

    Article  CAS  Google Scholar 

  36. Carson D, Nie L, Narayan R, Dubois P (1999) Maleation of polylactide (PLA) by reactive extrusion. J Appl Polym Sci 72:477–485

    Article  Google Scholar 

  37. Carlson D, Dubois P, Nie L, Narayan R (1998) Free radical branching of polylactide by reactive extrusion. Polym Eng Sci 38:311–321

    Article  CAS  Google Scholar 

  38. Gao J, Duan L, Yang G, Zhang Q, Yang M, Fu Q (2012) Manipulating poly(lactic acid) surface morphology by solvent-induced crystallization. Appl Surf Sci 261:528–535

    Article  CAS  Google Scholar 

  39. Chena B-K, Shiha C-C, Chenb AF (2012) Ductile PLA nanocomposites with improved thermal stability. Compos Part A Appl Sci Manuf 43:2289–2295

    Article  Google Scholar 

  40. Ozkoc G, Kemaloglu S (2009) Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA. J Appl Polym Sci 114:2481–2487

    Article  CAS  Google Scholar 

  41. Oyama HT (2009) Super-tough poly(lactic acid) materials: reactive blending with ethylene copolymer. Polymer 46:747–751

    Article  Google Scholar 

  42. Sgnori F, Coltelli M-B, Simona Bronco S (2009) Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym Degrad Stab 94:74–82

    Article  Google Scholar 

  43. Li SM, Rashkov I, Espartero L, Manolova N, Vert M (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(l-lactic acid) blocks. Macromolecules 29:57–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Research Foundation of Korea (NRF) Grant funded by The Ministry of Science, ICT & Future Planning, Korea (Acceleration Research Program (2009-0078791)); Pioneer Research Center Program (2010-0019308/2010-0019482) and BK 21 Plus Program (21A2013800002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Sik Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, KM., Lim, SW., Choi, MC. et al. Thermal and mechanical properties of poly(lactic acid) modified by poly(ethylene glycol) acrylate through reactive blending. Polym. Bull. 71, 3305–3321 (2014). https://doi.org/10.1007/s00289-014-1251-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1251-x

Keywords

Navigation