Skip to main content

Advertisement

Log in

Analysis of crosslinking in polypyrrole particles synthesized by plasma

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This work presents a study of the chemical structure, thermal degradation and electric conductivity of spherical particles synthesized as a result of intense crosslinking of pyrroles in plasma glow discharges. A new method to calculate crosslinking, hydrogenation and fragmentation in polymers was developed in this task based on XPS calculations. The results indicated that the percentages of hydrogenated states in polypyrrole particles varied in the 37.1–46.6 % and 55.5–58.5 % intervals for C and N, respectively. The participation of crosslinked states increased from 48.5 to 59.8 % with the energy of synthesis considering C atoms and decreased from 24 to 6 % for N atoms. The particles have two thermal degradations, the first between 115 and 400 °C and the second with mean temperature degradation of 535 °C. The electric conductivity of the particles was in the range of 10−5–10−10 S/m with activation energy between 1.96 and 2.34 eV. This behavior can be associated with the crosslinking percentages in the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cruz GJ, Morales J, Olayo R (1999) Films obtained by plasma polymerization of pyrrole. Thin Solid Films 342:119–126

    Article  CAS  Google Scholar 

  2. Morales J, Olayo MG, Cruz GJ, Olayo R (2002) Synthesis by plasma and characterization of bilayer aniline-pyrrole thin films doped with iodine. J Polym Sci Pol Phys 40:1850–1856

    Article  CAS  Google Scholar 

  3. Cao J, Matsoukas T (2004) Synthesis of hollow nanoparticles by plasma polymerization. J Nanopart Res 6:447–455

    Article  CAS  Google Scholar 

  4. Yang P, Zhang J, Guo Y (2009) Synthesis of intrinsic fluorescent polypyrrole nanoparticles by atmospheric pressure plasma polymerization. Appl Surf Sci 225:6924–6929

    Article  Google Scholar 

  5. Paosawatyanyong B, Tapaneeyakorn K, Bhanthumnavin W (2010) AC plasma polymerization of pyrrole. Surf Coat Tech 204:3069–3072

    Article  CAS  Google Scholar 

  6. Cruz GJ, Olayo MG, Lopez OG, Gomez LM, Morales J, Olayo R (2010) Nanospherical particles of polypyrrole synthesized and doped by plasma. Polymer 51:4314–4318

    Article  CAS  Google Scholar 

  7. Wang J, Neoh KG, Kang ET (2004) Comparative study of chemically synthesized and plasma polymerized pyrrole and thiophene thin films. Thin Solid Films 446:205–217

    Article  CAS  Google Scholar 

  8. Gupta ND, Banerjee D, Dasb NS, Chattopadhyay KK (2011) Kinetics of micelle formation and their effect on the optical and structural properties of polypyrrole nanoparticles. Colloid Surf A 385:55–62

    Article  Google Scholar 

  9. Reung-U-Rai A, Prom-Jun A, Prissanaroon-Ouajai W, Ouajai S (2008) Synthesis of highly conductive polypyrrole nanoparticles via microemulsion polymerization. JOM J Min Met Mat S 18:27–31

    Google Scholar 

  10. Wei S, Mavinakuli P, Wang Q, Chen D, Asapu R, Mao Y, Haldolaarachchige N, Young DP, Guo A (2011) Polypyrrole-titania nanocomposites derived from different oxidants. J Electrochem Soc 158:K205–K212

    Article  CAS  Google Scholar 

  11. Xie X, Zhou X (2011) Well encapsulated hollow borosilicate glass sphere@ polypyrrole composite with low density, designable thickness and conductivity. Colloid Surf A 386:158–165

    Article  CAS  Google Scholar 

  12. Zhu J, Wei S, Zhang L, Mao Y, Ryu J, Mavinakuli P, Karki AB, Young DP, Guo Z (2010) Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. J Phys Chem C 114:16335–16342

    Article  CAS  Google Scholar 

  13. Mavinakuli P, Wei S, Wang Q, Karki AB, Dhage S, Wang Z, Young DP, Guo Z (2010) Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity. J Phys Chem C 114:3874–3882

    Article  CAS  Google Scholar 

  14. Guo Z, Shin K, Karki AB, Young DP, Kaner RB, Hahn HT (2009) Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites. J Nanopart Res 11:1441–1452

    Article  CAS  Google Scholar 

  15. Noh KA, Kim DW, Jin CS, Shin KH, Kim JH, Ko JM (2003) Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder. J Power Sources 124:593–595

    Article  CAS  Google Scholar 

  16. Geng W, Li N, Li X, Wang R, Tu J, Zhang T (2007) Effect of polymerization time on the humidity sensing properties of polypyrrole. Sensor Actuat B Chem 125:114–119

    Article  CAS  Google Scholar 

  17. Ghamouss F, Brugere A, Anbalagan AC, Schmaltz B, Luais E, Tran-Van F (2013) Novel glycerol assisted synthesis of polypyrrole nanospheres and its electrochemical properties. Synthetic Met 168:9–15

    Article  CAS  Google Scholar 

  18. Hoshina Y, Zaragoza-Contreras EA, Farnood R, Kobayashi T (2012) Nanosized polypyrrole affected by surfactant agitation for emulsion polymerization. Polym Bull 68:1689–1705

    Article  CAS  Google Scholar 

  19. Bortolato SA, Thomas KE, McDonough K, Gurney RW (2012) Evaluation of photo-induced crosslinking of thymine polymers using FT-IR spectroscopy and chemometric analysis. Polymer 53:5285–5294

    Article  CAS  Google Scholar 

  20. Gauthier MA, Luo J, Calvet D, Ni C, Zhu XX, Garon M, Buschmann MD (2004) Degree of crosslinking and mechanical properties of crosslinked poly(vinyl alcohol) beads for use in solid-phase organic synthesis. Polymer 45:8201–8210

    Article  CAS  Google Scholar 

  21. Gomez LM, Olayo MG, Cruz GJ, Lopez-Gracia OG, Gonzalez-Torres M, de Jesus C, Gonzalez-Salgado F (2012) Effect of energy in the size of pyrrole-derived particles synthesized by plasma. Superficies y Vacío 25:88–91

    CAS  Google Scholar 

  22. Olayo R, Ríos C, Salgado-Ceballos H, Cruz GJ, Morales J, Olayo MG, Alcaraz-Zubeldia M, Alvarez AL, Mondragon R, Morales A, Diaz-Ruiz A (2008) Tissue spinal cord response in rats after implants of polypyrrole and polyethylene glycol obtained by plasma. J Mater Sci Mater M 19:817–826

    Article  CAS  Google Scholar 

  23. Crist BV (1998) Advanced peak-fitting of monochromatic XPS spectra. J Surf Anal 4:428–434

    CAS  Google Scholar 

  24. Cotton FA, Wilkinson G (1980) Quimica inorganica avanzada. Limusa, Mexico

    Google Scholar 

  25. Dean JA (1999) Lange´s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  26. Olayo MG, Gonzalez-Salgado F, Cruz GJ, Gomez LM, Garcia-Rosales G, Gonzalez-Torres M, Lopez-Gracia (2013) Chemical structure of TiO organometallic particles obtained by plasma. Adv Nanopart 2:229–235

    Article  CAS  Google Scholar 

  27. González-Torres M, Olayo MG, Cruz GJ, Gómez LM, Sánchez-Mendieta V, González-Salgado F (2014) XPS study of the chemical structure of plasma biocopolymers of pyrrole and ethyleneglycol. Adv Chem. ISSN 2356-6612 (print), ISSN 2314-7571 (online) (in press)

Download references

Acknowledgments

The authors wish to thank Jorge Pérez for his help in the SEM micrographs, Rafael Basurto for his support in the XPS analysis and CONACYT for the partial financial support to this work with the projects 130190 and 154757.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Olayo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, L.M., Cruz, G.J., Olayo, M.G. et al. Analysis of crosslinking in polypyrrole particles synthesized by plasma. Polym. Bull. 71, 3275–3287 (2014). https://doi.org/10.1007/s00289-014-1249-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1249-4

Keywords

Navigation