Polymer Bulletin

, Volume 71, Issue 9, pp 2437–2452 | Cite as

Electrospun polylactic acid non-woven mats incorporating silver nanoparticles

  • H. Vargas-Villagran
  • A. Romo-UribeEmail author
  • E. Teran-Salgado
  • M. Dominguez-Diaz
  • A. Flores
Original Paper


This research is focused on the influence of silver nanoparticles (AgNPs) on the spinnability, morphology and wetting properties of electrospun polylactic acid (PLA) non-woven mats. PLA was electrospun from a chloroform solution (4.7 % g/g) and a filament and beads morphology was obtained, the filaments having an average diameter of 1.25 μm. Interestingly, water contact angle measurements showed a contact angle of θ = 81°, an improvement relative to as-cast film which exhibited a contact angle of θ = 54°. When AgNP, of ca. 12 nm size, were incorporated at 1 % g/g relative to PLA weight, to the 4.7 % PLA-chloroform solution, and electrospun, the filaments diameter was greatly reduced to an average of 0.65 μm, and the density of polymer beads was also reduced. It is believed that the electric conductivity of silver enhanced the spinnability of the polymer solution. Strikingly, water contact angle measurements showed that the PLA/AgNP mats exhibited an angle as high θ = 134°. Increasing the solution concentration to 6.7 % g/g still produced a beads-and-filament morphology, but with larger filament diameters, probably due to an increase in solution viscosity. When AgNP were added (again at 1 % g/g relative to PLA weight), the occurrence of beads diminished and the average filament diameter decreased confirming the enhancement in spinnability by the AgNPs. Moreover, contact angles remained above 110° suggesting that the overall morphology is key to PLA’s mats hydrophobic behavior and not only filament diameter. Finally, the non-woven mats were rather amorphous, as revealed by differential scanning calorimetry and X-ray scattering, due presumably to the quenching process associated with the electrospinning process.


Differential Scanning Calorimetry Contact Angle Water Contact Angle Cold Crystallization Water Contact Angle Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Polylactic acid


Melting transition temperature


Crystallization transition temperature


Glass transition temperature


Cold crystallization temperature


Decomposition temperature


Thermogravimetric analysis


Differential scanning calorimetry


Fourier transform infrared spectroscopy


Attenuated total reflectance


Wide-angle X-ray scattering

Cu Kα

Copper radiation source


Polarized optical microscopy







H. Vargas-Villagran, E. Teran-Salgado and M. Domínguez-Díaz were supported by graduate scholarships from the Mexican Council for Science and Technology (CONACyT). Thanks are due to MICINN, Spain (grant FIS2010-18069) for generous financial support. Thanks are due to BIPEDD-2: S2010-BMD-2457 Comunidad de Madrid, Spain, for providing the facilities to carry out the X-ray diffraction experiments. This research was partially supported by CONACyT, under SEP-CONACyT CB2011 program, grant 168095. We thank Dr. R. Guardian Tapia (CIICAp-UAEM) and Mr. I. Puente Lee (F.Q.-UNAM) for help with SEM.


  1. 1.
    Auras AR, Lim LT, Selke SE, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications, chap 4. Wiley, USACrossRefGoogle Scholar
  2. 2.
    Dumitriu S (2011) Polymeric biomaterials, Chap 2. CRC Press, USAGoogle Scholar
  3. 3.
    Domb AJ, Kumar N, Ezra A (2011) Biodegradable polymers in clinical use and clinical development, part I. Wiley, USACrossRefGoogle Scholar
  4. 4.
    Sawyer L, Grubb D, Meyers GF (2008) Polymer microscopy, Chap 1, 3rd edn. Springer, USAGoogle Scholar
  5. 5.
    Dasaria A, Quirósb J, Herreroa B, Boltesb K, García-C E, Rosala R (2012) Antifouling membranes prepared by electrospinning polylactic acid containing biocidal nanoparticles. J Membr Sci 405–406:134–140CrossRefGoogle Scholar
  6. 6.
    Fei Y, Wang H, Gao W, Wan Y, Fu J, Yang R (2014) Antimicrobial activity and mechanism of PLA/TP composite nanofibrous films. J Textile Inst 105:196–202CrossRefGoogle Scholar
  7. 7.
    Kayaci F, Umu O, Tekinay T, Uyar T (2013) Antibacterial electrospun poly(lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. J Agric Food Chem 61:3901–3908CrossRefGoogle Scholar
  8. 8.
    Weir E, Lawlor A, Whelan A, Regan F (2008) The use of nanoparticles in anti-microbial materials and their characterization. Analyst 133:835–845CrossRefGoogle Scholar
  9. 9.
    Kumar A, Kumar P, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241Google Scholar
  10. 10.
    Wang H, Cheng M, Hu J, Wang C, Xu S, Han C (2013) Preparation and optimization of silver nanoparticles embedded electrospun membrane for implant associated infections prevention. ACS Appl Mater Interfaces 5:11014–11021CrossRefGoogle Scholar
  11. 11.
    Jia Y, Wu C, Dong F, Huang G, Zeng X (2013) Preparation of PCL/PVP/Ag nanofiber membranes by electrospinning method. Appl Mech Mater 268–270:580–583Google Scholar
  12. 12.
    Cacciotti I, Fortunati E, Puglia D, Kenny JM, Nanni F (2014) Effect of silver nanoparticles and cellulose nanocrystals on electrospun poly(lactic) acid mats: morphology, thermal properties and mechanical behavior. Carbohydr Polym 103:22–31CrossRefGoogle Scholar
  13. 13.
    Erem AD, Ozcan G, Erem HH, Skrifvars M (2013) Antimicrobial activity of poly (l-lactide acid)/silver nanocomposite fibers. Text Res J 83:2111–2117CrossRefGoogle Scholar
  14. 14.
    Cooley JF (1902) Apparatus for electrically dispersing fluids. U.S. Patent No. 692631Google Scholar
  15. 15.
    Morton WJ (1902) Method of dispersing fluids. U.S. Patent No. 705691Google Scholar
  16. 16.
    Formhals A. (1934) Process and apparatus for preparing artificial threads. U.S. Patent No. 1975504Google Scholar
  17. 17.
    Larrondo L, Manley J (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Polym Sci Part B Polym Phys 19:909–920Google Scholar
  18. 18.
    Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRefGoogle Scholar
  19. 19.
    Romo-Uribe A, Arizmendi L, Romero-Guzman ME, Sepúlveda-Guzman S, Cruz-Silva R (2009) Electrospun nylon nanofibers as effective reinforcement to polyaniline membranes. ACS Appl Mater Interfaces 1:2502–2508CrossRefGoogle Scholar
  20. 20.
    Thern SA, Zussman E, Yarin AL (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 45(6):2017–2030CrossRefGoogle Scholar
  21. 21.
    Lyons J, Ko F (2005) Melt electrospinning of polymers: a review. Polymer News 30(6):170–178CrossRefGoogle Scholar
  22. 22.
    Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238CrossRefGoogle Scholar
  23. 23.
    Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci Part B Polym Phys 40(18):2119–2129CrossRefGoogle Scholar
  24. 24.
    Xie J, Hsieh Y-L (2003) Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J Mater Sci 38(10):2125–2133CrossRefGoogle Scholar
  25. 25.
    De Vrieze S, Westbroek P, Van Camp T, Van Langenhove L (2007) Electrospinning of chitosan nanofibrous structures: feasibility study. J Mater Sci 42(19):8029–8034CrossRefGoogle Scholar
  26. 26.
    Deng X-L, Sui G, Zhao M-L, Chen G-Q, Yang X-P (2007) Poly(l-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. J Biomater Sci Polymer Edn 18(1):117–130CrossRefGoogle Scholar
  27. 27.
    Vargas-Villagran H, Teran-Salgado E, Domínguez-Diaz M, Flores O, Campillo B, Flores A, Romo-Uribe A (2012) Non-woven membranes electrospun from polylactic acid incorporating silver nanoparticles as biocide. Mater Res Soc Symp Proc 1376. doi: 10.1557/opl.2012.285
  28. 28.
    Alvarado-Tenorio B, Reyes LS, Romo-Uribe A (2013) Polycaprolactone/α-alumina and hydroxyapatite-based micro- and nano-structured hybrid fibers. Mater Res Soc Symp Proc 1569Google Scholar
  29. 29.
    Wei M, Lee J, Kang B, Mead J (2005) Preparation of core-sheath nanofibers from conducting polymer blends. Macromol Rapid Commun 26(14):1127–1132CrossRefGoogle Scholar
  30. 30.
    Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002) Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog 18(5):1027–1032CrossRefGoogle Scholar
  31. 31.
    Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly (glycolic acid) electrospinning. J Macromol Sci Part A Pure Appl Chem 38(12):1231–1243CrossRefGoogle Scholar
  32. 32.
    Yoshimoto H, Shina YM, Teraia H, Vacanti JP (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082CrossRefGoogle Scholar
  33. 33.
    Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) Biodegradable electrospun fibers for drug delivery. J Control Release 92(3):227–231CrossRefGoogle Scholar
  34. 34.
    Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006CrossRefGoogle Scholar
  35. 35.
    Kim TG, Park TG (2006) Surface functionalized electrospun biodegradable nanofibers for immobilization of bioactive molecules. Biotechnol Prog 22(4):1108–1113CrossRefGoogle Scholar
  36. 36.
    Lia L, Hashaikehb R, Arafata H (2013) Development of eco-efficient micro-porous membranes via electrospinning and annealing of poly (lactic acid). J Membr Sci 436:57–67CrossRefGoogle Scholar
  37. 37.
    Thomas V, Zhang X, Catledge SA, Vohra YK (2007) Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater 2(4):224–232CrossRefGoogle Scholar
  38. 38.
    Perego G, Cella GD, Bastioli C (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polymer Sci 59(1):37–43CrossRefGoogle Scholar
  39. 39.
    Teran-Salgado E, Valerio-Cardenas C, Romo-Uribe A (2011) Facile synthesis of colloidal silver nanoparticles and its incorporation into acrylic coatings. Polym Mater Sci Eng 105:910–911Google Scholar
  40. 40.
    Teran-Salgado E (2011) B.Sc. Thesis, Universidad Autonoma del Estado de MorelosGoogle Scholar
  41. 41.
    Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Häusermann D (1996) Two-dimensional detector software: from real detector to idealised image or two-theta scan. High Pressure Res 14:235–248CrossRefGoogle Scholar
  42. 42.
    Castillo-Perez R, Romo-Uribe A (2012) Diseño y construcción de un instrumento para medir ángulo de contacto. Memorias del XVIII Congreso Internacional Anual de la SOMIM, pp 772–780. ISBN: 978-607-95309-6-9Google Scholar
  43. 43.
    Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly (lactic acid)s. Polymer 39:267–273CrossRefGoogle Scholar
  44. 44.
    Su Z, Guo W, Liu Q, Wu C (2009) Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym Bull 62:629CrossRefGoogle Scholar
  45. 45.
    Huang SM, Hwang JJ, Liu HJ, Lin LH (2010) Crystallization behavior of poly(l-lactic acid)/montmorillonite nanocomposites. J Appl Polym Sci 117:434CrossRefGoogle Scholar
  46. 46.
    Gracia-Fernandez CA, Gomez-Barreiro S, Lopez-Beceiro J, Naya S, Artiaga R (2012) New approach to the double melting peak of poly(l-lactic acid) observed by DSC. J Mater Res 27:1379–1382CrossRefGoogle Scholar
  47. 47.
    Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Sinha Ray S, Causin V (2012) Electrospun nylon nanofibers for improvement of mechanical properties and for the control of the degradation behavior of poly(lactide)-based composites. J Mater Res 27:1399–1409CrossRefGoogle Scholar
  48. 48.
    Dominguez-Diaz M, Flores A, Cruz-Silva R, Romo-Uribe A (2012) Morphology induced hydrophobic behavior of electrospun polyhydroxyalkanoate membranes. Mater Res Soc Symp Proc 1466. doi: 10.1557/opl.2012.1256
  49. 49.
    Elzey S, Grassian VH (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanoparticle Res 12:1945–1958CrossRefGoogle Scholar
  50. 50.
    Xu X, Yang Q, Wang Y, Yu H, Chen X, Jing X (2006) Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles. Eur Polym J 42:2081–2087CrossRefGoogle Scholar
  51. 51.
    Krouse SA, Schrock RR, Cohen RE (1987) Ring-opening polymerization of cyclooctyne. Macromolecules 20(4):903–904CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • H. Vargas-Villagran
    • 1
  • A. Romo-Uribe
    • 1
    Email author
  • E. Teran-Salgado
    • 1
  • M. Dominguez-Diaz
    • 1
  • A. Flores
    • 2
  1. 1.Laboratorio de Nanopolimerios y Coloides, Instituto de Ciencias FisicasUniversidad Nacional Autonoma de MexicoCuernavacaMexico
  2. 2.Departamento de Fisica MacromolecularInstituto de Estructura de la Materia (IEM-CSIC)MadridSpain

Personalised recommendations