Skip to main content

Advertisement

Log in

A polyurethane-based elastomeric nanocomposite with a high dielectric constant

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

To increase the electric energy density of dielectric elastomer substantially, high dielectric constant nanocomposites were developed using polyurethane (PU) as matrix and copper phthalocyanine oligomer (CuPc)—a high dielectric constant organic semiconductor—as filler. Transmission electron microscope (TEM)-observed morphologies revealed that the sizes of CuPc particles in nanocomposite of PU chemically attached with 8.78 vol% of CuPc were in the range of 10–20 nm, much smaller than the sizes (250–600 nm) in the physical blend of PU with the same volume fraction of CuPc. At 100 Hz, the nanocomposite film exhibited a dielectric constant of 391, representing more than 60-fold increase with respect to the pure PU. The enhanced dielectric response of the nanocomposite makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 17.7 % was achieved under a field of 10 V/μm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stoyanov H, Brochu P, Niu XF, Lai C, Yuna S, Pei QB (2013) Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes. RSC Adv 3:2272–2278

    Article  CAS  Google Scholar 

  2. Huang JH, Shian S, Suo ZG, Clarke DR (2013) Maximizing the energy density of dielectric elastomer generators using equi-biaxial loading. Adv Funct Mater. doi:10.1002/adfm.201300402

    Google Scholar 

  3. Stoyanov H, Kollosche M, Risse S, McCarthy DN, Kofod G (2011) Elastic block copolymer nanocomposites with controlled interfacial interactions for artificial muscles with direct voltage control. Soft Matter 7:194–202

    Article  CAS  Google Scholar 

  4. Bozlar M, Punckt C, Korkut S, Zhu J, Foo CC, Suo ZG, Aksay IA (2012) Dielectric elastomer actuators with elastomeric electrodes. Appl Phys Lett 101:091907-1–091907-5

    Article  CAS  Google Scholar 

  5. Anderson IA, Gisby TA, McKay TG, O’Brien BM, Calius P (2012) Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J Appl Phys 112:041101-1–04110120

    Article  CAS  Google Scholar 

  6. O’Halloran A, O’Malley F, McHugh P (2008) A review on dielectric elastomer actuators, technology, applications, and challenges. J Appl Phys 104:071101-1–07110110

    Google Scholar 

  7. Pelrine R, Kornbluh R, Pei QB, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287:836–839

    Article  CAS  Google Scholar 

  8. Kornbluh R, Heydt R, Pelrine R (2009) In: Carpi F, Smela E (eds) Biomedical applications of electroactive polymer actuators. Wiley, West Sussex, pp 387–392

    Google Scholar 

  9. Opris DM, Molberg M, Nüesch F, Löwe C, Walder C, Fischer B (2011) Dielectric elastomer materials for actuators and energy harvesting. Proc. SPIE 7976, Electroactive Polymer Actuators and Devices (EAPAD), 79760G

  10. Walder C, Molberg M, Opris DM, Nüesch FA, Löwe C, Plummer CJG., Leterrier Y, Manson JAE (2009) High k dielectric elastomeric materials for low voltage applications. Proc. SPIE 7287, Electroactive Polymer Actuators and Devices (EAPAD), 72870Q

  11. Molberg M, Leterrier Y, Plummer CJG., Löwe C, Opris DM, Clemens F, Manson JAE (2010) Elastomer actuators: systematic improvement in properties by use of composite materials. Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD), 76420M

  12. Galantini F, Bianchi S, Castelvetro V, Gallone G (2013) Functionalized carbon nanotubes as a filler for dielectric elastomer composites with improved actuation performance. Smart Mater Struct 22:055025

    Article  CAS  Google Scholar 

  13. Opris DM, Molberg M, Walder C, Ko YS, Fischer B, Nüesch F (2011) New silicone composites for dielectric elastomer actuator applications in competition with acrylic foil. Adv Funct Mater 21:3531–3539

    Article  CAS  Google Scholar 

  14. Molberg M, Crespy D, Nüesch FA, Manson JAE, Löwe C, Opris DM (2010) High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv Funct Mater 20:3280–3291

    Article  CAS  Google Scholar 

  15. Zhang QM, Li HF, Poh M, Xu HS, Cheng ZY, Xia F, Huang C (2002) An all-organic composite actuator material with a high dielectric constant. Nature (London) 419:284–287

    Article  CAS  Google Scholar 

  16. Wang JW, Wang Y, Wang F, Li SQ, Xiao J, Shen QD (2009) A large enhancement in dielectric properties of poly(vinylidene fluoride) based all-organic nanocomposite. Polymer 50:679–684

    Article  CAS  Google Scholar 

  17. Wang JW, Wang Y, Li SQ, Xiao J (2010) Enhanced dielectric response in P(VDF-TrFE) based all-organic nanocomposites. J Polym Sci Part B Polym Phys 48:490–495

    Article  CAS  Google Scholar 

  18. Nalwa HS, Dalton LR, Vasudevan P (1985) Dielectric properties of copper-phthalocyanine polymer. Euro Polym J 21:943–947

    Article  CAS  Google Scholar 

  19. Wang JW, Shen QD, Bao HM, Yang CZ, Zhang QM (2005) Microstructure and dielectric properties of P(VDF-TrFE-CFE) with partially grafted copper phthalocyanine oligomer. Macromolecules 38:2247–2252

    Article  CAS  Google Scholar 

  20. Li JY (2003) Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys Rev Lett 90:217601

    Article  CAS  Google Scholar 

  21. Achar BN, Fohlen GG, Parker JA (1982) Phthalocyanine polymers. II.Synthesis and characterizeation of some metal phthalocyanine sheet oligomers. J Polym Sci Polym Chem 20:1785–1790

    Article  CAS  Google Scholar 

  22. Wang JW, Shen QD, Yang CZ, Zhang QM (2004) High dielectric constant composite of P(VDF-TrFE) with grafted copper phthalocyanine oligomer. Macromolecules 37:2294–2298

    Article  CAS  Google Scholar 

  23. Ma J, Liu CH, Li R, Wu HX, Zhu LN, Yang YJ (2011) Preparation and properties of castor oil-based polyurethane/a-zirconium phosphate composite films. J Appl Polym Sci 121:1815–1822

    Article  CAS  Google Scholar 

  24. Huang C, Zhang QM, DeBotton G, Bhattacharya K (2004) All-organic dielectric-percolative three-component composite materials with high electromechanical response. Appl Phys Lett 84:4391–4393

    Article  CAS  Google Scholar 

  25. Seanor DA (1982) Electrical properties of polymers. Academic Press, New York

    Google Scholar 

  26. Bobnar V, Levstik A, Huang C, Zhang QM (2004) Distinctive contributions from organic filler and relaxorlike polymer matrix to dielectric response of CuPc-P(VDF-TrFE-CFE) composite. Phys Rev Lett 92:047604

    Article  CAS  Google Scholar 

  27. Bobnar V, Levstik A, Huang C, Zhang QM (2006) Dielectric properties and charge transport in all-organic relaxorlike CuPc-P(VDF-TrFE-CFE) composite and its constituents. Ferroelectrics 338:107–116

    Article  CAS  Google Scholar 

  28. Opris DM, Nüesch F, Löwe C, Molberg M, Nagel M (2008) Synthesis, characterization, and dielectric properties of phthalocyanines with ester and carboxylic acid functionalities. Chem Mater 20:6889–6896

    Article  CAS  Google Scholar 

  29. Lillo LD, Schmidt A, Carnelli DA, Ermanni P, Kovacs G, Mazza E, Bergamini A (2012) Measurement of insulating and dielectric properties of acrylic elastomer membranes at high electric fields. J Appl Phys 111:024904

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21174063), the Natural Science Foundation of Jiangsu Province (No. BK20131358), and the Aeronautical Science Foundation of China (No. 2011ZF52063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingwen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Wu, C., Liu, R. et al. A polyurethane-based elastomeric nanocomposite with a high dielectric constant. Polym. Bull. 71, 1263–1276 (2014). https://doi.org/10.1007/s00289-014-1127-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1127-0

Keywords

Navigation