Skip to main content
Log in

Synthesis of poly(lactic acid)–poly(ethylene glycol) copolymers using multi-SO3H-functionalized ionic liquid as the efficient and reusable catalyst

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Poly(lactic acid)–poly(ethylene glycol) copolymers were synthesized under the catalysis of multi-SO3H-functionalized ionic liquid. Compared to the ordinary ionic liquids and the traditional Lewis acid catalysts, the ionic liquids with multi-sulfonic acid groups were more catalytically active, and the reaction conversion rate reached up to 97.8 %. The molecular weight of the resulting copolymer was 5.69 × 104 g mol−1 and the degree of crystallinity was 42.9 %. The copolymers were also of higher hydrophilicity and better mechanical properties. The reaction kinetics of copolymerization was analyzed. The intrinsically high catalytic activity of multi-SO3H groups originated from the lower activation energy and the higher free acidity. The recovering catalytic activity of the multi-SO3H ionic liquid catalyst was higher, suggesting that it is a recyclable, environmentally friendly catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  CAS  Google Scholar 

  2. Inkinen S, Hakkarainen M, Albertsson AC, Södergård A (2011) From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules 12:523–532

    Article  CAS  Google Scholar 

  3. Ober CK, Cheng SZD, Hammond PT, Muthukumar M, Reichmanis E, Wooley KL, Lodge TP (2009) Research in science: macromolecular challenges and opportunities for the next decade. Macromolecules 42:465–471

    Article  CAS  Google Scholar 

  4. Maharana T, Mohanty B, Negia YS (2009) Melt–solid polycondensation of lactic acid and its biodegradability. Prog Polym Sci 34:99–124

    Article  CAS  Google Scholar 

  5. Ray ED, Patrick RG, David EH (2000) Polylactic acid technology. Adv Mater 12:1841–1846

    Article  Google Scholar 

  6. Chen BK, Shen CH, Chen AF (2012) Preparation of ductile PLA materials by modification with trimethyl hexamethylene diisocyanate. Polym Bull 69:313–322

    Article  CAS  Google Scholar 

  7. Pavia FC, La Carrubba V, Brucato V (2013) Polymeric scaffolds based on blends of poly-l-lactic acid (PLLA) with poly-d-l-lactic acid (PLA) prepared via thermally induced phase separation (TIPS): demixing conditions and morphology. Polym Bull 70:563–578

    Article  CAS  Google Scholar 

  8. Luo WJ, Li SM, Bei JZ, Wang SG (2002) Synthesis and characterization of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers. J Appl Polym Sci 84:1729–1736

    Article  CAS  Google Scholar 

  9. Hiemstra C, Zhong ZY, Pieter JD, Feijen J (2005) Stereocomplex mediated gelation of PEG–(PLA)2 and peg-(pla)8 block copolymers. Macromol Symp 224:119–131

    Article  CAS  Google Scholar 

  10. Zhu KJ, Lin XZ, Yang SL (1986) Preparation and properties of d,l-lactide and ethylene oxide copolymer: a modifying biodegradable polymeric material. J Polym Sci Part C Polym Lett Ed 24:331–337

    Article  CAS  Google Scholar 

  11. Chen XH, McCarthy SP, Gross RA (1997) Synthesis and characterization of lactide–ethylene oxide multiblock copolymers. Macromolecules 30:4295–4301

    Article  CAS  Google Scholar 

  12. Nagasaki Y, Okada T, Scholz C, Iijima M, Kato M, Kataoka K (1998) The reactive polymeric micelle based on an aldehyde ended poly(ethylene glycol)/poly(lactide) block copolymer. Macromolecules 31:1473–1479

    Article  CAS  Google Scholar 

  13. Ruan G, Feng SS (2003) Preparation and characterization of poly(lactic acid)–poly(ethylene glycol)–poly(lactic acid) (PLA–PEG–PLA) microspheres for controlled release of paclitaxel. Biomaterials 24:5034–5037

    Article  CAS  Google Scholar 

  14. Zhang Z, Xiong XQ, Wan JL, Xiao L, Gan L, Feng YM, Xu HB, Yang XL (2012) Cellular uptake and intracellular trafficking of PEG-b-PLA polymeric micelles. Biomaterials 33:7233–7240

    Article  CAS  Google Scholar 

  15. Giovino C, Ayensu I, Tetteh J, Boateng JS (2012) Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm 428:143–147

    Article  CAS  Google Scholar 

  16. Wang ZY, Wang F, Zhao YM, Zhou L (2004) Direct synthesis of biodegradable material PLEG via melt polycondensation (in Chinese). J Funct Polym 17:30–34

    Google Scholar 

  17. Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) Melt polycondensation of l-lactic acid with Sn(II) catalysts activated by various proton acids: a direct manufacturing route to high weight poly(l-lactic acid). J Polym Sci Part A Polym Chem 38:1673–1679

    Article  CAS  Google Scholar 

  18. Bas'ko M, Kubisa P (2010) Cationic polymerization of l,l-lactide. J Polym Sci Part A Polym Chem 48:2650–2658

    Article  CAS  Google Scholar 

  19. Kang JE, Lee JS, Kim DS, Lee SD, Lee HJ, Kim HS, Cheong M (2009) Ionic liquid-assisted hydroalkoxylation of hexafluoropropene with 2,2,2-trifluoroethanol: a mechanistic consideration. J Catal 262:177–180

    Article  CAS  Google Scholar 

  20. Tan R, Yin DH, Yu NY, Zhao HH, Yin D (2009) Easily recyclable polymeric ionic liquid-functionalized chiral salen Mn(III) complex for enantioselective epoxidation of styrene. J Catal 263:284–291

    Article  CAS  Google Scholar 

  21. Dukuzeyezu EM, Lefebvre H, Tessier M, Fradet A (2010) Synthesis of high molar mass poly(12-hydroxydodecanoic acid) in Brønsted acid ionic liquids. Polymer 51:1218–1221

    Article  CAS  Google Scholar 

  22. Wang WC, Wu LB, Huang Y, Li BG (2008) Melt polycondensation of l-lactic acid catalyzed by 1,3-dialkylimidazolium ionic liquids. Polym Int 57:872–878

    Article  CAS  Google Scholar 

  23. Mallakpour S, Rafiee ZH (2011) Ionic liquids as environmentally friendly solvents in macromolecules chemistry and technology, Part I. J Polym Environ 19:447–484

    Article  CAS  Google Scholar 

  24. Nie XW, Liu X, Gao L, Liu M, Song CS, Guo XW (2010) SO3H-functionalized ionic liquid catalyzed alkylation of catechol with tert-butyl alcohol. Ind Eng Chem Res 49:8157–8163

    Article  CAS  Google Scholar 

  25. Cai SF, Wang LS (2011) Epoxidation of unsaturated fatty acid methyl esters in the presence of SO3H-functional Brønsted acidic ionic liquid as catalyst. Chin J Chem Eng 19:57–63

    Article  CAS  Google Scholar 

  26. Thomazeau C, Oliver-Bourbigou H, Magana L, Luts S, Gilbert B (2003) Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc 125:5264–5265

    Article  CAS  Google Scholar 

  27. Bao SH, Quan NN, Zhang J, Yang JG (2011) Alkylation of p-cresol with tert-butanol catalyzed by novel multiple-SO3H functioned ionic liquid. Chin J Chem Eng 19:64–69

    Article  CAS  Google Scholar 

  28. Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC Jr, Davis JH (2002) Novel Brønsted acidic ionic liquids and their use as dual solvent catalysts. J Am Chem Soc 124:5962–5963

    Article  CAS  Google Scholar 

  29. Gui JH, Cong XH, Liu D, Zhang XT, Hu ZD, Sun ZL (2004) Novel Brønsted acidic ionic liquid as efficient and reusable catalyst system for esterification. Catal Commun 5:473–477

    Article  CAS  Google Scholar 

  30. Liu XM, Zhou JX, Guo XW, Liu M, Ma XL, Song CS, Wang C (2008) SO3H-functionalized ionic liquids for s elective alkylation of p-cresol with tert-butanol. Ind Eng Chem Res 47:5298–5303

    Article  CAS  Google Scholar 

  31. Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Graetzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  32. Huh KM, Bae YH (1999) Synthesis and characterization of poly(ethylene glycol)/poly(l-lactic acid) alternating multiblock copolymers. Polymer 40:6147–6155

    Article  CAS  Google Scholar 

  33. Rashkov I, Manolova N, Li SM, Espartero JL, Vert M (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with short poly(l-lactic acid) chains. Macromolecules 29:50–56

    Article  CAS  Google Scholar 

  34. Li SM, Rashkov I, Espartero JL, Manolva N, Vert M (1996) Synthesis, characterization, and hydrolytic degradation of PLA/PEO/PLA triblock copolymers with long poly(l-lactic acid) blocks. Macromolecules 29:57

    Article  CAS  Google Scholar 

  35. Yx L, Kissel T (1993) Synthesis and properties of biodegradable ABA triblock copolymers consisting of poly(l-lactic acid) or poly(l-lactic-co-glycolic acid) A-blocks attached to central poly(oxyethylene) B-blocks. J Control Release 27:247–257

    Article  Google Scholar 

  36. Brizzolara D, Cantow HJ (1996) Mechanism of the stereocomplex formation between enantiomeric poly(lactide)s. Macromolecules 29:191–197

    Article  CAS  Google Scholar 

  37. Ren HX, Ying HJ, Ouyang PK, Xu P, Liu J (2013) Catalyzed synthesis of poly(l-lactic acid) by macroporous resin Amberlyst-15 composite lactate utilizing melting polycondensation. J Mol Catal A 366:22–29

    Article  CAS  Google Scholar 

  38. Wang ZY, Zhao YM, Wang F (2006) Syntheses of poly(lactic acid)–poly(ethylene glycol) serial biodegradable polymer materials via direct melt polycondensation and their characterization. J Appl Polym Sci 102:577–587

    Article  CAS  Google Scholar 

  39. Wang ZY, Zhao YM, Wang F (2006) Syntheses of poly(lactic acid-co-glycolic acid) serial biodegradable polymer materials via direct melt polycondensation and their characterization. J Appl Polym Sci 99:244–252

    Article  CAS  Google Scholar 

  40. Sheng Y, Yuan Y, Liu CS, Tao XY, Shan XQ, Xu F (2009) In vitro macrophage uptake and in vivo biodistribution of PLA–PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. J Mater Sci Mater Med 20:1881–1891

    Article  CAS  Google Scholar 

  41. Lou W, Yuan H (2009) Synthesis and properties of poly(L-lactic acid/poly(ethylene glycol) copolymers (in Chinese). Mater Rev 23:449–451

    Google Scholar 

  42. Gu YL, Zhang J, Duan ZY, Deng YQ (2005) Pechmann reaction in non-chloroaluminate acidic ionic liquids under solvent-free conditions. Adv Syn Catal 347:512–536

    Article  CAS  Google Scholar 

  43. Zhao YW, Long JX, Deng FG, Liu XF, Li Z, Xia CG, Peng JJ (2009) Catalytic amounts of Brønsted acidic ionic liquids promoted esterification: study of acidity–activity relationship. Catal Commun 10:732–736

    Article  CAS  Google Scholar 

  44. Wu B, Liu WW, Zhang YM et al (2009) Do we understand the recyclability of ionic liquids. Chem Eur J 15:1804–1810

    Article  CAS  Google Scholar 

  45. Sung HH, Ngoc LM, Koo YM (2010) Microwave-assisted separation of ionic liquids from aqueous solution of ionic liquids. J Chromatogr A 1217:7638–7641

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Natural Science Funds of Shandong Province of China (Y2007B42), Research Funds of Shandong Jianzhu University (XN110110) and Free Exploring Program of Key laboratory of Shandong Jianzhu University (2013kf097), and Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT1066).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui-xue Ren or Han-jie Ying.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Hx., Ying, Hj., Sun, Ym. et al. Synthesis of poly(lactic acid)–poly(ethylene glycol) copolymers using multi-SO3H-functionalized ionic liquid as the efficient and reusable catalyst. Polym. Bull. 71, 1173–1195 (2014). https://doi.org/10.1007/s00289-014-1117-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-014-1117-2

Keywords

Navigation