Skip to main content
Log in

Synthesis and characterization of waterborne polyurethane/ZnO composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript


Waterborne polyurethane (WPU) is receiving great attention in recent decades mainly due to the possibility of the replacement of organic solvents by the water. However, this change causes a decrease in the properties (mechanical, thermal, adhesion, among others) of the films obtained by this technique. Therefore, studies have been carried out in the development of polymeric matrix with the incorporation of inorganic fillers. This work presents the synthesis by the in situ polymerization technique and the characterization of waterborne polyurethane/ZnO composites. These composites were based on isophorone diisocyanate, 2,2-bis(hydroxymethyl) propionic acid and a polyester diol (MM = 1,000 g/mol). The filler–polymer interaction, chemical structure, morphology, thermal and mechanical properties of the WPU/ZnO composites were investigated by Fourier transform infrared spectroscopy, Ultraviolet–visible spectroscopy, Thermogravimetric analysis, Differential scanning calorimetry, Scanning electron microscopy and Tensile testing. The results showed an improvement in thermal and mechanical properties of the PU/ZnO composites when compared with pure PU as well as good homogeneity of the filler into the polymer matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others


  1. Milíková M, Rychlý J, Matisová-Rychlá L, Csomorová K, Janigová I, Wilde HW (2010) Assessing the progress of degradation in polyurethanes by chemiluminescence. I. Unstabilised polyurethane films. Polym Degrad Stab 95:2367–2375

    Article  Google Scholar 

  2. Thomas PS, Thomas S, Bandyopadhyay S, Wurm A, Schick C (2008) Polystyrene/calcium phosphate nanocomposites: dynamic mechanical and differential scanning calorimetric studies. Compos Sci Technol 68:3220–3229

    Article  Google Scholar 

  3. Zhang SW, Ren L, Jiang J, Yang C, Chen M, Liu X (2011) Facile synthesis of waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nanostructured films. Prog Org Coat 70:1–8

    Article  CAS  Google Scholar 

  4. Heidarian M, Shishesaz MR, Kassiriha SM, Nematollahi M (2010) Characterization of structure and corrosion resistivity of polyurethane/organoclay nanocomposite coatings prepared through an ultrasonication assisted process. Prog Org Coat 68:180–188

    Article  CAS  Google Scholar 

  5. Yousfi M, Livi S, Dumas A, Le Roux C, Crépin-Leblond J, Greenhill-Hooper M, Duchet-Rumeau J (2013) Use of new synthetic talc as reinforcing nanofillers for polypropylene and polyamide 6 systems: thermal and mechanical properties. J Colloid Interface Sci 403:29–42

    Article  CAS  Google Scholar 

  6. Chattopadhyay DK, Dean CW (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  CAS  Google Scholar 

  7. Camargo PHC, Satyanarayana KG, Wypych F (2009) Nanocomposites: synthesis, structure, properties and new application opportunities. Mat Res 12:1–39

    Article  CAS  Google Scholar 

  8. Santanu S, Thomas MJ (2009) Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans Dielectr Electr Insul 16:531–542

    Article  Google Scholar 

  9. Carrión FJ, Sanes J, Bermúdez MD (2007) Influence of ZnO nanoparticle filler on the properties and wear resistance of polycarbonate. Wear 262:1504–1510

    Article  Google Scholar 

  10. Konstantinos A, Sierros K, Derrick I, Banerjee G, Nicholas J, Morris A, Darran R, Cairns A, Loannis K, George K (2010) Mechanical properties of ZnO thin films deposited on polyester substrates used in flexible device applications. Thin Solid Films 519:325–330

    Article  Google Scholar 

  11. Somwangthanaroj A, Suwanchatchai K, Ando S, Tanthapanichakoon W (2009) Effect of zinc precursor on thermal and light emission properties of ZnO nanoparticles embedded in polyimide films. Mat Chem Phys 114:751–755

    Article  CAS  Google Scholar 

  12. Sadia A, Shaheer M, Ansari A, Yanng SG, Shin HS (2009) Electrophoretically deposited polyaniline/ZnO nanoparticles for p–n heterostructure diodes. Superlattices Microstruct 46:872–880

    Article  Google Scholar 

  13. Wenbin Y, Xinya Z, Yanan Z, Huangin C (2012) Synthesis and characterization of self-crosslinkable zinc polyacrylate latices at room temperature. Iran Polym J 21:631–639

    Article  Google Scholar 

  14. Laachachia A, Rucha D, Addiegoa F, Ferriolb M, Cochezb M, Cuestac JM (2009) Effect of ZnO and organo-modified montmorillonite on thermal degradation of poly(methyl methacrylate) nanocomposites. Polym Degrad Stab 94:670–678

    Article  Google Scholar 

  15. Jung MH, Yun HG, Kim S, Kang MG (2010) ZnO nanosphere fabrication using the functionalized polystyrene nanoparticles for dye-sensitized solar cells. Electrochim Acta 55:6563–6569

    Article  CAS  Google Scholar 

  16. Chea XC, Jin YZ, Leeb YS (2010) Preparation of nano-TiO2/polyurethane emulsions via in situ RAFT polymerization. Prog Org Coat 69:534–538

    Article  Google Scholar 

  17. Ma XY, Zhang W (2009) Effects of flower-like ZnO nanowhiskers on the mechanical, thermal and antibacterial properties of waterborne polyurethane. Polym Degrad Stab 94:1103–1109

    Article  CAS  Google Scholar 

  18. Awad S, Chen H, Chen G, Gu X, Lee J (2011) Free volumes, glass transitions, and cross-links in zinc oxide/waterborne polyurethane nanocomposites. Macromolecules 44:29–38

    Article  CAS  Google Scholar 

  19. Zheng J, Ozisik R, Siegel RW (2005) Disruption of self-assembly and altered mechanical behavior in polyurethane/zinc oxide nanocomposites. Polymer 46:10873–10882

    Article  CAS  Google Scholar 

  20. Zheng J, Ozisik R, Siegel RW (2006) Phase separation and mechanical responses of polyurethane nanocomposites. Polymer 47:7786–7794

    Article  CAS  Google Scholar 

  21. Kim D, Jeon K, Lee Y, Seo J, Seo K, Han H, Khan S (2012) Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO. Prog Org Coat 74:435–442

    Article  CAS  Google Scholar 

  22. Amir A, Shadpour M, Sedigheh B (2011) Preparation, characterization and surface morphology of novel optically active poly(ester-amide)/functionalized ZnO bionanocomposites via ultrasonication assisted process. Appl Surf Sci 257:6725–6733

    Article  Google Scholar 

  23. Mishra AK, Mishra RS, Narayan R, Raju KVSN (2010) Effect of nano ZnO on the phase mixing of polyurethane hybrid dispersions. Prog Org Coat 67:405–413

    Article  CAS  Google Scholar 

  24. Silva VD, Santos LM, Subda SM, Ligabue R, Seferin M, Einloft S (2013) Synthesis and characterization of polyurethane/titanium dioxide nanocomposites obtained by in situ polymerization. Polym Bull 70:1819–1833

    Article  Google Scholar 

Download references


The authors would like to thank FINEP for the financial support, CNPq and CAPES for scholarship and Exceller Microdispersions for reactants donation. FAPERGS-PRONEX.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Ligabue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, R.R., Carone, C., Einloft, S. et al. Synthesis and characterization of waterborne polyurethane/ZnO composites. Polym. Bull. 71, 829–838 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: