Skip to main content
Log in

Poly(4,4′-oxydiphenylene-pyromellitimide)/TiO2 nanocomposites with surface-modified titanium dioxide using 4,4′-methylene diphenyl diisocyanate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study describes a facile method for preparing poly(4,4′-oxydiphenylene-pyromellitimide) (POPI)/TiO2 nanocomposites. 4,4′-Methylene diphenyl diisocyanate (MDI) was used as the surface modifier of TiO2 nanoparticles. MDI-modified and/or unmodified TiO2 were added to a viscose solution of poly(amic acid) (PAA) prepared by reacting 4,4′-oxydiphenylamine and pyromellitic dianhydride (PMDA). Casting the homogenized mixture onto glass Petri dishes gave the corresponding thermally cured films of POPI/TiO2 and POPI/TiO2-MDI nanocomposites through cyclodehydration of the PAA precursor. Diffuse reflectance UV/vis spectroscopy (UV/vis DRS) indicated that two absorption maxima are developed in the spectrum of MDI-treated TiO2 at about 440 and 580 nm, as well as a slight red shift in the absorption maxima of POPI/TiO2 and POPI/TiO2-MDI nanocomposites compared to the neat POPI occurred. From XRD measurements the mean sizes of nano-TiO2 in TiO2-MDI, POPI/TiO2, and POPI/TiO2-MDI were found to be 27, 22, and 19 nm, respectively. According to the SEM images of POPI/TiO2 and POPI/TiO2-MDI nanocomposites, the nano-sized TiO2 particles with globular shapes were dispersed into the polymer matrix. According to the TGA/DTG thermograms it could be deduced that the incorporation of nano-TiO2 particles into the polymer matrix can lead to an appreciable thermostability. Taking into account, the DTA thermograms a discrete endothermic transition could be detected at about 290 °C. MDI-grafted TiO2 seems to be a good candidate for incorporating into poly(4,4′-oxydiphenylene-pyromellitimide) as a commercial type polyimide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  Google Scholar 

  2. Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  3. Neouze MA, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatsh Chem 139:183–195

    Article  CAS  Google Scholar 

  4. Kamiya H, Iijima M (2010) Surface modification and characterization for dispersion stability of inorganic nanometer-scaled particles in liquid media. Sci Technol Adv Mater 11:044–304

    Google Scholar 

  5. Weng CC, Wei KH (2003) Selective distribution of surface-modified TiO2 nanoparticles in polystyrene-b-poly (Methyl Methacrylate) diblock copolymer. Chem Mater 15:2936–2941

    Article  CAS  Google Scholar 

  6. Horikoshi S, Serpone N, Hisamatsu Y, Hidaka H (1998) Photocatalyzed degradation of polymers in aqueous semiconductor suspensions. 3. photooxidation of a solid polymer: TiO2-blended poly(vinyl chloride) film. Environ Sci Technol 32:4010–4016

    Article  CAS  Google Scholar 

  7. Sun L, Liu J, Kirumakki SR, Schwerdtfeger ED, Howell RJ, Bahily KA, Miller SA, Clearfield A, Sue HJ (2009) Polypropylene nanocomposites based on designed synthetic nanoplatelets. Chem Mater 21:1154–1161

    Article  CAS  Google Scholar 

  8. Ou CF, Ho MT, Lin JR (2004) Synthesis and characterization of poly(ethylene terephthalate) nanocomposites with organoclay. J Appl Polym Sci 91:140–145

    Article  CAS  Google Scholar 

  9. Costache MC, Heidecker MJ, Manias E, Wilkie CA (2006) Preparation and characterization of poly(ethylene terephthalate)/clay nanocomposites by melt blending using thermally stable surfactants. Polym Adv Technol 17:764–771

    Article  CAS  Google Scholar 

  10. Elsayed AH, Mohy Eldin MS, Elsyed AM, Abo Elazm AH, Younes EM, Motaweh HA (2011) Synthesis and properties of polyaniline/ferrites nanocomposites. Int J Electrochem Sci 6:206–221

    CAS  Google Scholar 

  11. Wei S, Mavinakuli P, Wang Q, Chen D, Asapu R, Mao Y, Haldolaarachchige N, Young DP, Guo Z (2011) Polypyrrole-titania nanocomposites derived from different oxidants. J Electrochem Soc 158:205–212

    Article  Google Scholar 

  12. Jones WE Jr, Chiguma J, Johnson E, Pachamuthu A, Santos D (2010) Electrically and thermally conducting nanocomposites for electronic applications. Materials 3:1478–1496

    Article  CAS  Google Scholar 

  13. Hsu SLC, Chang KC (2002) Synthesis and properties of polybenzoxazole–clay nanocomposites. Polymer 43:4097–4101

    Article  CAS  Google Scholar 

  14. Yang F, Ou Y, Yu Z (1998) Polyamide 6/silica nanocomposites prepared by in situ polymerization. J Appl Polym Sci 69:355–361

    Article  CAS  Google Scholar 

  15. Chauhan BPS, Rathore JS, Bandoo T (2004) “Polysiloxane-Pd” nanocomposites as recyclable chemoselective hydrogenation catalysts. J Am Chem Soc 126:8493–8500

    Article  CAS  Google Scholar 

  16. Sroog CE (1991) Polyimides. Prog Polym Sci 16:561–694

    Article  CAS  Google Scholar 

  17. Sroog CE, Endrey AL, Abramo SV, Berr CE, Edwards WM, Olivier KL (1965) Aromatic polypyromellitimides from aromatic polyamic acids. J Polym Sci 3:1373–1390

    CAS  Google Scholar 

  18. Strunskus T, Grunze M, Kochendoerfer G, Woll Ch (1996) Identification of physical and chemical interaction mechanisms for the metals gold, silver, copper, palladium, chromium, and potassium with polyimide surfaces. Langmuir 12:2712–2725

    Article  CAS  Google Scholar 

  19. Seyedjamali H, Pirisedigh A (2012) Synthesis of well-dispersed polyimide/TiO2 nanohybrid films using a pyridine-containing aromatic diamine. Polym Bull 68:299–308

    Article  CAS  Google Scholar 

  20. Young JT, Tsai WH, Boerio FJ (1992) Characterization of the interface between pyromellitic dianhydride/oxydianiline polyimide and silver using surface-enhanced Raman scattering. Macromolecules 25:887–894

    Article  CAS  Google Scholar 

  21. Liu JG, Nakamura Y, Ogura T, Shibasaki Y, Ando S, Ueda M (2008) Optically transparent sulfur-containing Polyimide–TiO2 nanocomposite films with high refractive index and negative pattern formation from Poly(amic acid)–TiO2 nanocomposite film. Chem Mater 20:273–281

    Article  CAS  Google Scholar 

  22. Bessonov MI, Koton MM, Kudryavtsev VV, Laius LA (1987) Polyimides: thermally stable polymers, 2nd edn. Plenum, New York

    Book  Google Scholar 

  23. Zhang Y, Li Y, Li G, Huang H, Daoud WA, Xin JH, Li L (2007) Polyimide-surface-modified silica tubes: preparation and cryogenic properties. Chem Mater 19:1939–1945

    Article  CAS  Google Scholar 

  24. Zha JW, Dang ZM, Song HT, Yin Y, Chen G (2010) Dielectric properties and effect of electrical aging on space charge accumulation in polyimide/TiO2 nanocomposite films. J Appl Phys 108:094113–094119

    Article  Google Scholar 

  25. He S, Lu C, Zhang S (2011) Facile and efficient route to Polyimide-TiO2 nanocomposite coating onto carbon fiber. ACS Appl Mater Interfaces 3:4744–4750

    Article  CAS  Google Scholar 

  26. Zha JW, Song HT, Dang ZM, Shi CY, Bai J (2008) Mechanism analysis of improved corona resistant in polyimide/TiO2 nanohybrid films with high breakdown strength. Appl Phys Lett 93:192911

    Article  Google Scholar 

  27. Zha JW, Dang ZM, Zhou T, Song HT, Chen G (2010) Electrical properties of TiO2-filled polyimide nanocomposite films prepared via an in situ polymerization process. Synth Met 160:2670–2674

    Article  CAS  Google Scholar 

  28. Zha JW, Fan BH, Dang ZM, Li ST, Chen G (2010) Microstructure and electrical properties in three-component (Al2O3-TiO2)/polyimide nanocomposite films. J Mater Res 25:2384–2391

    Article  CAS  Google Scholar 

  29. Behniafar H, Girandehi SN (2011) Optical and thermal behavior of novel fluorinated polyimides capable of preparing colorless, transparent and flexible films. J Fluor Chem 132:878–884

    Article  CAS  Google Scholar 

  30. Behniafar H, Sadeghi AH (2012) Highly fluorinated poly(ether-imide)s derived from 2,2′-bis(3,4,5-trifluorophenyl)-4,4′-diaminodiphenyl ether and aromatic dianhydrides. Polym Int 61:286–293

    Article  CAS  Google Scholar 

  31. Behniafar H, Girandehi SN, Hosseinpour M (2012) Novel trifluoromethyl-containing Poly(amide–imide)s: organosolubility, optical behavior, thermostability, and crystallinity. J Appl Polym Sci 126:653–662

    Article  CAS  Google Scholar 

  32. Behniafar H, Abedini PA (2011) Flexible, low-colored and transparent thin films prepared from new thermo-stable and organo-soluble poly(amide-imide)s. Polym Degrad Stab 96:1327–1332

    Article  CAS  Google Scholar 

  33. Behniafar H, Mohammadparast DS (2012) Novel ortho-linked and CF3-substituted poly(amide-imide)s: optical and thermal behavior. Polym Degrad Stab 97:228–233

    Article  CAS  Google Scholar 

  34. Yang L, Jiang X, Ruan W, Zhao B, Xu W, Lombardi JR (2008) Observation of enhanced raman scattering for molecules adsorbed on TiO2 nanoparticles: charge-transfer contribution. J Phys Chem C 112:20095–20098

    Article  CAS  Google Scholar 

  35. Janaky C, Bencsik G, Racz A, Visy C (2010) Electrochemical grafting of poly(3,4-ethylenedioxythiophene) into a titanium dioxide nanotube host network. Langmuir 26:13697–13702

    Article  CAS  Google Scholar 

  36. Feng Y, Yin J, Chen M, Song M, Su B, Lei Q (2013) Effect of nano-TiO2 on the polarization process of polyimide/TiO2 composites. Mater Lett 96:113–116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the School of Chemistry and Research Council of Damghan University for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Behniafar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behniafar, H., Amirkhalili, S.K. Poly(4,4′-oxydiphenylene-pyromellitimide)/TiO2 nanocomposites with surface-modified titanium dioxide using 4,4′-methylene diphenyl diisocyanate. Polym. Bull. 71, 775–785 (2014). https://doi.org/10.1007/s00289-013-1091-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1091-0

Keywords

Navigation