Skip to main content
Log in

Thermo-oxidative stability of poly(methyl methacrylate)/poly(methyl methacrylate)-grafted SiO2 nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Thermo-oxidative stability of PMMA-grafted SiO2 and PMMA/PMMA-grafted SiO2 nanocomposites was investigated by conventional non-isothermal gravimetric technique. It was interesting to find that PMMA-grafted SiO2 nanoparticles exhibited higher thermo-oxidative stability than that of PMMA. The apparent activation energy of PMMA-grafted SiO2 nanoparticles increased with the grafting ratio of PMMA from SiO2, which was estimated by Kissinger method. This indicates that the strong interactions existing between the grafted chains are responsible for the enhanced thermo-oxidative stability of PMMA-grafted SiO2 nanoparticles. However, the grafting ratio of PMMA from SiO2 in nanoparticles has only limited effect on the thermo-oxidative stability of PMMA/PMMA-grafted SiO2 nanocomposites due to a much lower content of grafted PMMA in the nanoparticles relative to PMMA. The increased thermo-oxidative stability of PMMA/PMMA-grafted SiO2 nanocomposites is possibly resulted from the increased SiO2 content in the nanocomposites, in which the grafting ratio of PMMA in PMMA-grafted SiO2 nanoparticles is kept almost as a constant. The glass transition temperature (T g) of PMMA/PMMA-grafted SiO2 nanocomposites is about 25 °C and is higher than that of PMMA. The grafting ratio of PMMA from SiO2 in the nanoparticles has no qualitative effects on the T g of the nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mishra AK, Chattopadhyay S, Nando GB (2010) Effect of modifiers on morphology and thermal properties of novel thermoplastic polyurethane-peptized laponite nanocomposite. J Appl Polym Sci 115:558–569

    Article  CAS  Google Scholar 

  2. Lafuente E, Pinol M, Martinez MT, Munoz E, Oriol L, Serrano JL (2009) Preparation and characterization of nematic polyazomethine/single-walled carbon nanotube composites prepared by in situ polymerization. J Polym Sci Part A: Polym Chem 47:2361–2372

    Article  CAS  Google Scholar 

  3. Hong RY, Chen LL, Li JH, Li HZ, Zheng Y, Ding J (2007) Preparation and application of polystyrene-grafted ZnO nanoparticles. Polym Adv Technol 18:901–909

    Article  CAS  Google Scholar 

  4. Zhong S, Meng Y, Ou Q, Shu X (2005) Plasma induced grafting of PSt onto titanium dioxide powder. II J Appl Polym Sci 97:2112–2117

    Article  CAS  Google Scholar 

  5. Yang JM, Lu CS, Hsu YG, Shih CH (1997) Mechanical properties of acrylic bone cement containing PMMA-SiO2 hybrid sol–gel material. J Biomed Mater Res 38:143–154

    Article  CAS  Google Scholar 

  6. Yang M, Dan Y (2006) Preparation of poly(methyl methacrylate)/titanium oxide composite particles via in situ emulsion polymerization. J Appl Polym Sci 101:4056–4063

    Article  CAS  Google Scholar 

  7. Jiang L, Pan K, Zhang J, Dan Y (2008) Reverse atom transfer radical polymerization of MMA in the presence of CaCO3/SiO2 two-component composite particles. Macromol Symp 261:104–112

    Article  CAS  Google Scholar 

  8. Kashiwagi T, Inaba A, Brown JE, Hatada K, Kitayama T, Masuda E (1986) Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules 19:2160–2168

    Article  CAS  Google Scholar 

  9. Manring LE (1989) Thermal degradation of poly(methy1 methacrylate). 2. Vinyl-terminated polymer. Macromolecules 22:2673–2677

    Article  CAS  Google Scholar 

  10. Hampsch HL, Yang J, Wong GK, Torkelson JM (1988) Thermal degradation of saturated poly(methy1 methacrylate). Macromolecules 21:530–532

    Article  Google Scholar 

  11. Simon P, Zhong W, Bakos D, Hynek D (2008) Thermooxidative stability of polymethyl methacrylate containing nanoparticles of silica/titania and silica/zirconia. Chem Pap 62:176–180

    Article  CAS  Google Scholar 

  12. Kuan HC, Chiu SL, Chen CH, Kuan CF, Chiang CL (2009) Synthesis, characterization, and thermal stability of PMMA/SiO2/TiO2 tertiary nanocomposites via non-hydrolytic sol–gel method. J Appl Polym Sci 113:1959–1965

    Article  CAS  Google Scholar 

  13. Costache MC, Wang D, Heidecker MJ, Manias E, Wilkie CA (2006) The thermal degradation of poly(methyl methacrylate) nanocomposites with montmorillonite, layered double hydroxides and carbon nanotubes. Polym Adv Technol 17:272–280

    Article  CAS  Google Scholar 

  14. Zhou HJ, Rong MZ, Zhang MQ, Ruan WH, Friedrich K (2007) Role of reactive compatibilization in preparation of nanosilica/polypropylene composites. Polym Eng Sci 47:499–509

    Article  CAS  Google Scholar 

  15. Chaichana E, Jongsomjit B, Praserthdam P (2007) Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in situ polymerization with metallocene catalyst. Chem Eng Sci 62:899–905

    Article  CAS  Google Scholar 

  16. Kissinger HHE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706

    Article  CAS  Google Scholar 

  17. Li CZ, Benicewicz BC (2005) Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 38:5929–5936

    Article  CAS  Google Scholar 

  18. Zhu J, Uhl FM, Morgan AB, Wilkie CA (2001) Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater 13:4649–4654

    Article  CAS  Google Scholar 

  19. Imoto M, Ohashi K (1968) Vinyl polymerization. Polymerization of methyl methacrylate initiated by methyl 1-methyl-2-(9′-anthryl)-cyclopropylcarboxylate. Makromol Chem 117:117–127

    Article  CAS  Google Scholar 

  20. Ferington TE, Tobolsky AV (1955) Organic disulfides as initiators of polymerization: tetramethylthiuram disulfide. J Am Chem Soc 77:4510–4512

    Article  CAS  Google Scholar 

  21. Zammit MD, Davis TP, Haddleton DM (1996) Determination of the propagation rate coefficient (kp) and termination mode in the free-radical polymerization of methyl methacrylate, employing matrix-assisted laser desorption ionization time-of-flight mass spectrometry for molecular weight distribution. Macromolecules 29:492–494

    Article  CAS  Google Scholar 

  22. Chen K, Vyazovkin S (2006) Mechanistic differences in degradation of polystyrene and polystyrene-clay nanocomposite: thermal and thermo-oxidative degradation. Macromol Chem Phys 207:587–595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Tangshan Municipal Science and Technology Commission (No. 09150202A-3-2) and Tangshan Normal University (No.10B 04) for supporting this research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deling Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Su, G., He, Q. et al. Thermo-oxidative stability of poly(methyl methacrylate)/poly(methyl methacrylate)-grafted SiO2 nanocomposites. Polym. Bull. 71, 487–496 (2014). https://doi.org/10.1007/s00289-013-1072-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1072-3

Keywords

Navigation