Skip to main content
Log in

Design of experiments for thermo-mechanical behavior of polypropylene/high-density polyethylene/nanokaolinite clay composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This paper deals with the preparation of nanocomposites using polypropylene (PP)/high-density polyethylene (PE) blend and low-cost nanokaolinite clay by melt compounding in a Thermo Haake Rheocord mixer. The optimization of processing parameters and nanoclay content is done using Box–Behnken design of response surface methodology. Mechanical properties are modeled in terms of processing parameters and nanoclay content and results are verified using statistical analysis. Most reports suggest that kaolinite clay is difficult to disperse in polymer matrix compared to costly montmorillonite clay. This difficulty is overcome by surface modification of nanokaolinite clay by an organic group and the effect of modification is studied using melt flow index, thermal stability and dynamic mechanical behavior. Morphological characterization is done by scanning electron microscopy and X-ray diffraction. Study shows that cheap and abundantly occurring nanokaolinite clay is an efficient reinforcing agent for PP/PE blend. Design of experiments can be effectively used to model such a system, which is influenced by a number of variables. It is also observed that surface modification of the nanoclay with an organic group leads to remarkable improvement in the thermal and mechanical properties of the blend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oya A, Kurokawa Y, Yasuda H (2000) Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites. J Mater Sci 35:1045

    Article  CAS  Google Scholar 

  2. Peter R, Hansjorg N, Stefen K, Rainer B, Ralf T, Rolf M (2000) Polypropylene/organoclay nanocomposite formation: influence of compatibilizer functionality and organoclay modification. Macromol Mater Eng 275:8

    Article  Google Scholar 

  3. Pegoretti A, Dorigato A, Penati A (2007) Tensile mechanical response of polyethylene-clay nanocomposites. Express Polym Lett 1(3):123–131

    Google Scholar 

  4. Lei SG, Hoa SV, Ton That M-T (2006) Effect of clay types on the processing and properties of polypropylene nanocomposites. Compos Sci Technol 66:1274–1279

    Article  CAS  Google Scholar 

  5. Dong Y (2008) Multiscale effects on deformation mechanisms of polymer nanocomposites: experimental characterization and numerical study. PhD Thesis, University of Auckland

  6. Deenadayalan E, Vidhate S, Lele A (2006) Nanocomposites of polypropylene impact copolymer and organoclays: role of compatibilizers. Polym Int 55(11):1270–1276

    Article  CAS  Google Scholar 

  7. Alexandre M, Dubois P (2006) Polymer–layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1 (2000)

    Google Scholar 

  8. Baniasadi H, Ramazani SA, Nikkhah JS (2010) Investigation of in situ prepared polypropylene/clay nanocomposites properties and comparing to melt blending method. Matter Des 31:76–84

    Article  CAS  Google Scholar 

  9. Gilman JW, Jackson CL, Morgan AB, Harris R (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropyl Polystyr Nanocomp Chem Matter 12:1866–1873

    Article  CAS  Google Scholar 

  10. Vaiziri HS, Omaraei IA, Abadyan M, Mortezaei M, Yousefi N (2011) Thermophysical and rheological behaviour of polystyrene/silica nanocomposites: investigation of nanoparticle content. Mater Des 32:4537–4542

    Article  Google Scholar 

  11. Venkatesh GS, Deb A, Ajay K, Shakti SC (2012) Effect of nanoclay content and compatibilizer on viscoelastic properties of montmorillonite/polypropylene nanocomposites. Mater Des 37:285–291

    Article  CAS  Google Scholar 

  12. Hejazi I, Sharif F, Garmabi H (2011) Effect of material and processing parameters on mechanical properties of polypropylene/ethylene-propylene-diene-monomer/clay nanocomposites. Mater Des 32:3803–3809

    Article  CAS  Google Scholar 

  13. Hernandez JCR, Sanchez MS, Ribelles LG, Pradas M (2007) Polymer-silica nanocomposites prepared by sol–gel technique; nanoindentation and tapping mode AFM studies. Eur Polym J 43:2775–2783

    Article  Google Scholar 

  14. Ray SS, Okamato M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1544

    Article  CAS  Google Scholar 

  15. Hui S, Chathopadhyay S, Chaki TK (2010) Thermal and thermo-oxidative degradation study of a model LDPE/EVA based TPE system: effect of nano silica and electron beam irradiation. Polym Compos 31(8):1387–1397

    CAS  Google Scholar 

  16. Akhlaghi S, Sharif A, Kalaee M, Elahi A, Pirzadeh M, Mazinani S, Afshari M (2012) Effect of stabilizer on the mechanical, morphological and thermal properties of compatibilized high density polyethylene/ethylene vinyl acetate copolymer/organoclay nanocomposites. Mater Des 33:273–283

    Article  CAS  Google Scholar 

  17. Mosleh Shirazi S, Janghorban K (2012) Investigation of physical and chemical properties of polypropylene hybrid nanocomposites. Mater Des 34:474–478

    Article  CAS  Google Scholar 

  18. Dayama N, Bhabani KS (2012) Microstructural correlation to micromechanical properties of polyamide-6/low density polyethylene-grafted-maleic anhydride/nanoclay ternary nanocomposites. Mater Des 33:510–522

    Article  Google Scholar 

  19. LV Z, Yang Y, Wu R, Tong Y (2012) Design and properties of a novel nucleating agent for isotactic polypropylene. Mater Des 37:73–78

    Article  CAS  Google Scholar 

  20. Zare Y, Garmabi H, Sharif F (2011) Optimization of mechanical properties of PP/nanoclay/CaCO3 ternary nanocomposite using response surface methodology. J Appl Polym Sci 122:3188–3200

    Article  CAS  Google Scholar 

  21. Qiu Z-C, Zhang J–J, Huang C-L, Niu Y, Yang K–K, Wang Y-Z (2012) The influence of the surface character of the clays on the properties of poly(p-dioxanone)/fibrous clay nanocomposites. J Appl Polym Sci 125:E247–E259

    Article  CAS  Google Scholar 

  22. Gunning MA, Istrate OM, Geever LM, Lyons JG, Blackie P, Chen B, Higginbotham CL (2012) The effect of maleic anhydride grafting efficiency on the flexural properties of polyethylene composites. J Appl Polym Sci 124:4799–4808

    CAS  Google Scholar 

  23. Mandal S, Alam S (2012) Studies on the mechanical, thermal and morphological properties of poly(ether ether ketone)/poly(ether sulfone)/barium titanate nanocomposites: correlation of experimental results with theoretical predictive models. J Appl Polym Sci 126:724–733

    Article  CAS  Google Scholar 

  24. George TS, Krishnan A, Joseph N, Anjana R, Geroge KE (2012) Effect of maleic anhydride grafting on nanokaolin clay reinforced polystyrene/high density polyethylene blends. Polym Compos. doi:10.1002/pc.22276

  25. Vijayalakshmi NS, Murthy RAN (1992) Modification of polyethylene by unsaturated compounds. J Appl Polym Sci 44:1377–1382

    Article  CAS  Google Scholar 

  26. Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW, Paul DR (2001) Effect of melt processing condition on the extend of exfoliation in organo-clay based nanocomposites. Polymer 42:9513–9522

    Article  CAS  Google Scholar 

  27. Vaia RA, Giannelis EP (1997) Lattice of polymer melt intercalation in organically modified layered silicates. Macromolecules 30:7990–7999

    Article  CAS  Google Scholar 

  28. Yu ZZ, Yang M, Zhang Q, Zhao C, Mai YWD (2003) Dispersion and distribution of organically modified montmorillonite in nylon-66 matrix. J Polym Sci Polym Phys 41:1234–1243

    Article  CAS  Google Scholar 

  29. Chrissopoulou K, Anastasidis SH (2011) Polyolefin/layered silicate nanocomposites with functional compatibilizers. Eur Polym J 47:600–613

    Article  CAS  Google Scholar 

  30. Erdem Yalc Inkaya S, Yildiz N, Sacak M, Calimli A (2010) Preparation of polystyrene/montmorillonite nanocomposites: optimization by response surface methodology. Turk J Chem 34:1–12

    Google Scholar 

  31. Ghasemi I, Karrabi M, Mohammadi M, Azizi H (2010) Evaluating the effect of processing conditions and organoclay content on the properties of styrene-butadiene rubber/organoclay nanocomposites by response surface methodology. Express Polym Lett 4:62–70

    Article  CAS  Google Scholar 

  32. Balachandran M, Lisha PS, Mulaleekrishnan R, Bhagawan SS (2010) Modeling NBR- layered silicate nanocomposites: a DoE approach. J Appl Polym Sci 118:3300–3310

    Article  CAS  Google Scholar 

  33. ASTM D638-94b (1995) Tensile properties of plastics. Annual book of American Society for Testing and Materials (ASTM) standards

  34. ASTM D790-92 (1995) Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. Annual book of American Society for Testing and Materials (ASTM) standards

  35. ASTM D 256-10 (1995) Standard test method for determining Izod pendulum impact resistance of plastics. Annual book of American Society for Testing and Materials (ASTM) standards

  36. ASTM D 1238-10. Standard test method for melt flow rates of thermoplastics by extrusion plastometer, volume 08.01. ICS number code 83.080.20 (thermoplastic material)

  37. Deniz B, Ismail HB (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836

    Article  Google Scholar 

  38. Nayak SK, Mohanty S, Sushanta KS (2009) Effect of clay types on the mechanical, dynamic mechanical and morphological properties of polypropylene nanocomposites. Polym Plast Tech Eng 48:976–988

    Article  CAS  Google Scholar 

  39. Asha KK, George TS, Anjana R, Joseph N, George KE Effect of modified kaolin clays on the mechanical properties of polypropylene/polystyrene blends. J Appl Polym Sci doi:10.1002/app.38043

  40. Liu SL, Lu XH, Liew FY, Lim SH, Yong MS Melt processing and properties of intercalated polypropylene/organoclay nanocomposites. STR/04/004/FT

  41. Kallel T, Massardier-Nageotte V, Jaziri M, Gerard J-F, Elleuch B (2003) Compatibilization of PE/PS and PE/PP blends. Effect of processing conditions and formulation. J Appl Polym Sci 90:2475–2484

    Article  CAS  Google Scholar 

  42. Homminga D, Goderis B, Hoffman S, Reynaers H, Groeninckx G (2005) Influence of shear flow on the preparation of polymer layered silicate nanocomposites. Polymer 46:9941–9954

    Article  CAS  Google Scholar 

  43. Zhang M, Lin B, Sundararaj U (2012) Effects of processing sequence on clay dispersion, phase morphology and thermal and rheological behaviours of PA6-HDPE-clay nanocomposites. J Appl Polym Sci 125:E714–E724

    Article  CAS  Google Scholar 

  44. Abbas-Abadi MS, Haghighi MN, Yeganeh H (2012) Effect of the melt flow index and melt flow rate on the thermal degradation kinetics of commercial polyolefins. J Appl Polym Sci 126:1739–1745

    Article  CAS  Google Scholar 

  45. Nigam V, Soni H, Saroop M, Verma GL, Bhattacharya AS, Setua DK (2012) Thermal, morphological and X-Ray study of polymer-clay nanocomposites. J Appl Polym Sci 124:3236–3244

    Article  CAS  Google Scholar 

  46. Komalan C, George KE, Kumar PAS, Varughese KT, Thomas S (2007) Dynamic mechanical analysis of binary and ternary polymer blends based on nyln copolymer/EPDM rubber and EPM grafted maleic anhydride compatibilizer. Express Polym Lett 10:641–653

    Article  Google Scholar 

  47. Banalia K, Aicha S (2012) Properties of polypropylene/polyamide nanocomposites prepared by melt processing with a PP-g-MAH compatibilizer. Mater Des 34:313–318

    Article  Google Scholar 

  48. Anjana R, George KE, George TS, Krishnan A (2012) Optimisation of processing conditions of PP/HDPE/nanokaolinite clay composites by response surface methodology. Int J Plast Technol 16(2):136–149

    Google Scholar 

  49. Gholamian F, Ghariban-Lavasani S, Garshasbi MM, Ansari M, Bataghv F, Moraveji A, Ranjbar Z The effects of water absorption and surface treatment on mechanical properties of epoxy nanocomposite using response surface methodology. Polym Bull. doi: 10.1007/s00289-013-0938-8

Download references

Acknowledgments

The authors wish to thank the organization CERD (Centre for Engineering Research and Development), Government of Kerala, India for the financial support extended to this research under the project CERD/2010/RSM (32).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anjana, R., Krishnan, A.K., Goerge, T.S. et al. Design of experiments for thermo-mechanical behavior of polypropylene/high-density polyethylene/nanokaolinite clay composites. Polym. Bull. 71, 315–335 (2014). https://doi.org/10.1007/s00289-013-1063-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1063-4

Keywords

Navigation