Polymer Bulletin

, Volume 71, Issue 1, pp 261–273 | Cite as

Synthesis of poly(urea–formaldehyde) encapsulated dibutyltin dilaurate through the self-catalysis of core materials

  • Li Yuan
  • Feng Chen
  • Aijuan Gu
  • Guozheng Liang
  • Chao Lin
  • Sidi Huang
  • Steven Nutt
  • Guoqiang Chen
  • Yongming Gao
Original Paper

Abstract

Polymeric microcapsules (MCs) filled with catalyst can be controlled to release the catalyst to initiate the polymerization reaction. In the present work, poly(urea–formaldehyde) (PUF) MCs filled with DBTDL (PUF/DBTDL MCs) were prepared using urea (U) and formaldehyde (F) as the wall shell materials by in situ polymerization. The U–F resins could easily polymerize in the presence of the core material DBTDL to produce PUF polymers, then they deposited on the surface of the DBTDL droplets, forming PUF/DBTDL MCs. The decomposition temperature (Td) at 5 % weight loss of PUF/DBTDL MCs was about 245 °C. The application of PUF/DBTDL MCs to cyanate ester resins preliminarily showed the reaction control capability of the MCs due to the slow release of DBTDL through the wall shell.

Keywords

Microcapsule Catalyst Properties Diffusion-controlled reaction Characterization 

References

  1. 1.
    Omrani A, Ghaemy M, Rostami AA (2009) Thermosetting polymers from epoxy resin and a Nickel catalyst of diethylenetriamine. J Therm Anal Calorim 98:477–483CrossRefGoogle Scholar
  2. 2.
    You ZW, Bi XP, Jeffries EM, Wang YD (2012) A biocompatible, metal-free catalyst and its application in microwave-assisted synthesis of functional polyesters. Polym Chem 3:384–389CrossRefGoogle Scholar
  3. 3.
    Li WF, Liang GZ, Xin WL (2004) Triazine reaction of cyanate ester resin systems catalyzed by organic tin compound: kinetics and mechanism. Polym Int 53:869–876CrossRefGoogle Scholar
  4. 4.
    Dai SK, Zhuo DX, Gu AJ, Liang GZ, Yuan L (2011) A novel hybrid catalyst system and its effects on the curing, thermal, and dielectric properties of cyanate ester. Polym Eng Sci 51:2236–2244CrossRefGoogle Scholar
  5. 5.
    Pengjam W, Saengfak B, Ekgasit S, Chantarasiri N (2012) Copper–amine complexes as new catalysts for rigid polyurethane foam preparations. J Appl Polym Sci 123:3520–3526CrossRefGoogle Scholar
  6. 6.
    Burel F, Feldman A, Bunel C (2005) Hydrogenated hydroxy-functionalized polyisoprene (H-HTPI) and isocyanurate of isophorone diisocyanates (I-IPDI): reaction kinetics study using FTIR spectroscopy. Polymer 46:15–25CrossRefGoogle Scholar
  7. 7.
    Xu JJ, Song R, Wu Q, Yu YZ (2001) Novel dibutyltin oxide-tributyl phosphate condensate as accelerator for the curing of the epoxy resin/4,4′-diamino diphenyl sulfone system. I. Chemical reactions and properties of the cured resin. J Appl Polym Sci 80:1229–1236CrossRefGoogle Scholar
  8. 8.
    Ichiura H, Morikawa M, Fujiwara K (2005) Preparation of microcapsules that produce color in response to humidity for use in intelligent functional paper. J Mater Sci 40:1987–1991CrossRefGoogle Scholar
  9. 9.
    Cejková J, Hanus J, Stepánek F (2010) Investigation of internal microstructure and thermo-responsive properties of composite PNIPAM/silica microcapsules. J Colloid Interf Sci 346:324–330CrossRefGoogle Scholar
  10. 10.
    Fransaer J, Celis JP, Roos JR (1992) Electro-osmophoresis of a charged permeable microcapsule with thin double layer. J Colloid Interf Sci 151:26–40CrossRefGoogle Scholar
  11. 11.
    Skirtach AG, Karageorgiev P, Bédard MF, Sukhorukov GB, Möhwald H (2008) Reversibly permeable nanomembranes of polymeric microcapsules. J Am Chem Soc 130:11572–11573CrossRefGoogle Scholar
  12. 12.
    Pavlov AM, Sapelkin AV, Huang XY, P’ng KM, Bushby AJ, Sukhorukov GB, Skirtach AG (2011) Neuron cells uptake of polymeric microcapsules and subsequent intracellular release. Macromol Biosci 11:848–854CrossRefGoogle Scholar
  13. 13.
    Lensen D, Gelderblom EC, Vriezema DM, Marmottant P, Verdonschot N, Versluis M, de Jong N, van Hest JCM (2011) Biodegradable polymeric microcapsules for selective ultrasound-triggered drug release. Soft Matter 7:5417–5422CrossRefGoogle Scholar
  14. 14.
    Deyrai Y, Zydowicz N, Cassagnau P (2004) Polymer crosslinking controlled by release of catalyst encapsulated in polycarbonate micro-spheres. Polymer 45:6123–6131CrossRefGoogle Scholar
  15. 15.
    Vallance MA, Evans TL, Kelly JM (1988) Composition and method for controlling polymerization rate of cyclic polycarbonate oligomer with encapsulated catalyst. US Patent 4755588Google Scholar
  16. 16.
    Kim WG (2009) Cure properties of self-extinguishing epoxy resin systems with microencapsulated latent catalysts for halogen-free semiconductor packaging materials. J Appl Polym Sci 113:408–417CrossRefGoogle Scholar
  17. 17.
    Cho SH, Magnus Andersson H, White SR, Sottos NR, Braun PV (2006) Polydimethylsiloxane-based self-healing materials. Adv Mater 18:997–1000CrossRefGoogle Scholar
  18. 18.
    Yuan L, Liang GZ, Xie JQ, Li L, Guo J (2006) Preparation and characterization of poly(urea–formaldehyde) microcapsules filled with epoxy resins. Polymer 47:5338–5349CrossRefGoogle Scholar
  19. 19.
    Mookhoek SD, Blaiszik BJ, Fischer HR, Sottos NR, White SR, van der Zwaag S (2008) Peripherally decorated binary microcapsules containing two liquids. J Mater Chem 18:5390–5394CrossRefGoogle Scholar
  20. 20.
    Niu XW, Sun YM, Ding SN, Chen CC, Song B, Xu HB, Qi ZJ, Qi Q (2012) Synthesis of enhanced urea-formaldehyde resin microcapsules doped with nanotitania. J Appl Polym Sci 124:248–256CrossRefGoogle Scholar
  21. 21.
    Guo HL, Zhao XP, Wang JP (2005) Synthesis of functional microcapsules containing suspensions responsive to electric fields. J Colloid Interf Sci 284:646–651CrossRefGoogle Scholar
  22. 22.
    Sun G, Zhang Z (2002) Mechanical strength of microcapsules made of different wall materials. Int J Pharm 242:307–311CrossRefGoogle Scholar
  23. 23.
    Park SJ, Shin YS, Lee JR (2001) Preparation and characterization of microcapsules containing lemon oil. J Colloid Interf Sci 241:502–508CrossRefGoogle Scholar
  24. 24.
    Torry SA, Campbell A, Cunliffe AV, Tod DA (2006) Kinetic analysis of organosilane hydrolysis and condensation. Int J Adhes Adhes 26:40–49CrossRefGoogle Scholar
  25. 25.
    Christianson Peep, Pehk Tõnis, Siimer Kadri (2006) Structure formation in urea-formaldehyde resin synthesis. Proc Estonian Acad Sci Chem 55:212–225Google Scholar
  26. 26.
    Camino G, Operti L, Trossarelli L (1983) Mechanism of thermal degradation of urea-formaldehyde polycondensates. Polym Degrad Stabil 5:161–172CrossRefGoogle Scholar
  27. 27.
    Piver WT (1973) Organotin compounds: industrial applications and biological investigation. Environ Health Perspect 4:61–79CrossRefGoogle Scholar
  28. 28.
    Bryant YG (1999) Melt spun fibers containing microencapsulated phase change material. ASME BED 44:225–234Google Scholar
  29. 29.
    Nair CPR, Mathew D, Ninan KN (2001) Cyanate ester resins, recent developments. Adv Polym Sci 155:1–99CrossRefGoogle Scholar
  30. 30.
    Liu J, Ding ND, Xu RF, He QH, Shen J, Hu BX (2011) Cyanate ester resin modified by hydroxyl-terminated polybutadiene: morphology, thermal, and mechanical properties. Polym Eng Sci 51:1404–1408CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Li Yuan
    • 1
    • 2
    • 3
    • 4
  • Feng Chen
    • 4
  • Aijuan Gu
    • 1
    • 2
    • 4
  • Guozheng Liang
    • 1
    • 2
    • 4
  • Chao Lin
    • 4
  • Sidi Huang
    • 3
  • Steven Nutt
    • 3
  • Guoqiang Chen
    • 1
  • Yongming Gao
    • 2
  1. 1.College of Textile and Clothing EngineeringSoochow UniversitySuzhouPeople’s Republic of China
  2. 2.Jiangsu Yingxiang Chemical Fiber Stock Co., LtdWujiangPeople’s Republic of China
  3. 3.Department of Chemical Engineering and Materials ScienceUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Materials Science and Engineering, College of Chemistry, Chemical Engineering and Materials ScienceSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations