Skip to main content
Log in

Preparation of highly flexible chitin nanofiber-graft-poly(γ-l-glutamic acid) network film

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the previous study, we successfully prepared a chitin nanofiber film by regeneration from a chitin ion gel with an ionic liquid using methanol. In this study, we performed surface-initiated graft polymerization of γ-benzyl l-glutamate N-carboxyanhydride (BLG-NCA) from amino groups on a partially deacetylated chitin nanofiber (PDA-CNF) film. First, the chitin nanofiber film was immersed in 40 % NaOH aq. at 80 °C for 7 h for partial deacetylation. Then, the PDA-CNF film was immersed in a solution of BLG-NCA in ethyl acetate at 0 °C for 24 h for graft polymerization from amino groups on nanofibers to give a chitin nanofiber-graft-poly(γ-benzyl l-glutamate) (CNF-g-PBLG) film. The analytical results of the film indicated that graft polymerization of BLG-NCA occur on surface of nanofibers. Furthermore, the film was treated with 1.0 mol/L NaOH aq. to convert PBLG on nanofibers into poly(γ-l-glutamic acid sodium salt) (PLGA). Then, condensation of the resulting carboxylates with amino groups at the terminal ends of PLGAs or the remaining amino groups on nanofibers was performed using the condensing agent to produce a CNF-g-PLGA network film. The resulting film showed the good mechanical properties with high flexibility, which has potentials as promising materials for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226

    Article  CAS  Google Scholar 

  2. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  3. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678

    Article  CAS  Google Scholar 

  4. Muzzarelli RAA (2011) Chitin nanostructures in living organisms. In: Gupta SN (ed) Chitin formation and diagenesis. Springer, New York, pp 1–34

    Google Scholar 

  5. Muzzarelli RAA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electro spinning, dissolution in imidazolium ionic liquids, and supercritical drying. Marine Drugs 9:1510–1533

    Article  CAS  Google Scholar 

  6. Liebert T, Heinze T (2008) Interaction of ionic liquids with polysaccharides 5. Solvents and reaction media for the modification of cellulose. Bio Resources 3:576–601

    Google Scholar 

  7. Feng L, Chen ZIJ (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. Mol Liq 142:1–5

    Article  Google Scholar 

  8. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6828

    Article  CAS  Google Scholar 

  9. Zakrzewska ME, Lukasik EB, Lukasik RB (2010) Solubility of carbohydrates in ionic liquids. Energy Fuels 24:737–745

    Article  CAS  Google Scholar 

  10. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  11. Wu Y, Sasaki T, Irie S, Sakurai K (2008) A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 49:2321–2327

    Article  CAS  Google Scholar 

  12. Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971

    Article  CAS  Google Scholar 

  13. Wang WT, Zhu J, Wang XL, Huang Y, Wang YZ (2010) Dissolution behavior of chitin in ionic liquids. J Macromol Sci Part B Phys 49:528–541

    Article  CAS  Google Scholar 

  14. Jaworska MM, Kozlecki T, Gorak A (2012) Review of the application of ionic liquids as solvents for chitin. J Polym Eng 32:67–69

    Article  Google Scholar 

  15. Bochek AM, Murav’ev AA, Novoselov NP, Zaborski M, Zabivalova NM, Petrova VA, Vlasova EN, Volchek BZ, Lavrent’ev VK (1012) Specific features of cellulose and chitin dissolution in ionic liquids of varied structure and the structural organization of regenerated polysaccharides. Russ J Appl Chem 85:1718–1725

    Article  Google Scholar 

  16. Yamazaki S, Takegawa A, Kaneko Y, Kadokawa J, Yamagata M, Ishikawa M (2009) An acidic cellulose-chitin hybrid gel as novel electrolyte for an electric double Layer capacitor. Electrochem Commun 11:68–70

    Article  CAS  Google Scholar 

  17. Prasad K, Murakami M, Kaneko Y, Takada A, Nakamura Y, Kadokawa J (2009) Weak gel of chitin with ionic liquid, 1-allyl-3-methylimidazolium bromide. Int J Biol Macromol 45:221–225

    Article  CAS  Google Scholar 

  18. Kadokawa J, Takegawa A, Mine S, Prasad K (2011) Preparation of chitin nanowhiskers using an ionic liquid and their composite materials with poly(viny alcohol). Carbohydr Polym 84:1408–1412

    Article  CAS  Google Scholar 

  19. Zeng JB, He YS, Li SL, Wang YZ (2012) Chitin whiskers: a overview. Biomacromolecules 13:1–11

    Article  CAS  Google Scholar 

  20. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318

    Article  CAS  Google Scholar 

  21. Ifuku S (2012) Preparation of chitin nanofibers from crab shell and their applications. Kobunshi Ronbunshu 69:460–467

    Article  Google Scholar 

  22. Setoguchi T, Yamamoto K, Kadokawa J (2012) Preparation of chitin nanofiber-graft-poly(l-lactide-co-ε-caprolactone) films by surface-initiated ring-opening graft copolymerization. Polymer 53:4977–4982

    Article  CAS  Google Scholar 

  23. Albertsson AC, Varma IK (2002) Aliphatic polyesters: synthesis, properties and applications. Adv Polym Sci 157:1–40

    Article  CAS  Google Scholar 

  24. Hakkarainen M (2002) Aliphatic polyesters: abiotic and biotic degradation and degradation products. Adv Polym Sci 157:113–138

    Article  CAS  Google Scholar 

  25. Seyednejad H, Ghassemi AH, van Nostrum CF, Vermonden T, Hennink WE (2011) Functional aliphatic polyesters for biomedical and pharmaceutical applications. J Control Release 152:168–176

    Article  CAS  Google Scholar 

  26. Kricheldorf HR (2006) Polypeptides and 100 years of chemistry of α-amino acid N-carboxyanhydrides. Angew Chem Int Ed 45:5752–5784

    Article  CAS  Google Scholar 

  27. Deming TJ (2007) Synthetic polypeptides for biomedical applications. Prog Polym Sci 32:858–875

    Article  CAS  Google Scholar 

  28. Kurita K, Kanari M, Koyama Y (1985) Studies on chitin. 11. Graft-copolymerization of γ-methyl l-glutamate NCA onto water-soluble chitin. Polym Bull 14:511–514

    Article  CAS  Google Scholar 

  29. Kurita K, Iwawaki S, Ishii S, Nishimura S (1992) Introduction of poly(l-alanine) side chains into chitin as versatile spacer arms having a terminal free amino group and immobilization of NADH active sites. J Polym Sci, Part A Polym Chem 30:685–688

    Article  CAS  Google Scholar 

  30. Poirier M, Charlet G (2002) Chitin fractionation and characterization in N, N-dimethylacetamide/lithium chloride solvent system. Carbohydr Polym 50:363–370

    Article  CAS  Google Scholar 

  31. Fujita Y, Koga K, Kim HK, Wang XS, Sudo A, Nishida H, Endo T (2007) Phosgene-free synthesis of N-carboxyanhydrides of α-amino acids based on bisarylcarbonates as starting compounds. J Polym Sci Part A Polym Chem 45:5365–5369

    Article  CAS  Google Scholar 

  32. Zhao D, Fei Z, Geldbach TJ, Scopelliti R, Laurenczy G, Dyson PJ (2005) Allyl-functionalised ionic liquids: synthesis, characterisation, and reactivity. Helv Chim Acta 88:665–675

    Article  CAS  Google Scholar 

  33. Phongying S, Aiba S, Chirachanchai S (2007) Direct chitosan nanoscaffold formation via chitin whiskers. Polymer 48:393–400

    Article  CAS  Google Scholar 

  34. Shigemasa Y, Matsuura H, Sashiwa H, Saimoto H (1996) Evaluation of different absorbance ratios from infrared spectroscopy for analyzing the degree of deacetylation in chitin. Int J Biol Macromol 18:237–242

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Kadokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadokawa, Ji., Setoguchi, T. & Yamamoto, K. Preparation of highly flexible chitin nanofiber-graft-poly(γ-l-glutamic acid) network film. Polym. Bull. 70, 3279–3289 (2013). https://doi.org/10.1007/s00289-013-1020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1020-2

Keywords

Navigation