Skip to main content
Log in

Influence of the multi-functional epoxy monomers structure on the electro-optical properties and morphology of polymer-dispersed liquid crystal films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polymer dispersed liquid crystal (PDLC) films were prepared by polymerization-induced phase separation method with nematic LC content as low as 40 wt%, and the electro-optical properties were carefully investigated. To accomplish this, the structure of multi-functional curable epoxy monomers with different composition feed ratios and the weight percentages of the two groups were examined in this study. The combined effects of heat-curable monomers’ structure on the conspicuous morphology of polymer network of PDLC films formed small holes and suitably distributed coin-like networks in both groups A and B, respectively. The detailed characteristics and morphology of polymer network of PDLC films were analyzed by employing liquid crystal device parameter tester, UV-Vis-NIR spectrophotometer and scanning electron microscope. Meanwhile, the enhanced curing temperature effects on the alkyl chain length, short flexible chain length, and rigid chain segment containing epoxy monomers structure on the increasing morphology of polymer network as well as electro-optical properties of PDLC films were also studied. It was found that the LC domain size of the polymer network could be regulated by adjusting the structure and composition ratio of curable epoxy monomers, and then the electro-optics of the PDLC films could be optimized, which is beneficial for decreasing the total LC content in PDLC devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doane JW (1992) in Liquid crystals—applications and uses. edited by B. Bahadur. World Scientific book, Singapore. ISBN-10: 9810229526

  2. Doane JW, Vaz NA, Wu BG, Zumer S (1986) Field controlled light scattering from nematic microdroplets. Appl Phys Lett 48(4):269–271. doi:10.1063/1.96577

    Article  CAS  Google Scholar 

  3. Crawford GP, Zumer S (1996) Liquid crystals in complex geometries, Taylor Francis, London. Adv Mater 9(12):996–997. doi:10.1002/adma.19970091218

    Google Scholar 

  4. Kashima M, Cao H, Liu HJ, Meng QY, Wang D, Li FS, Yang H (2010) Effects of the chain length of crosslinking agents on the electro-optical properties of polymer dispersed liquid crystal films. Liq Cryst 37(3):339–343. doi:10.1080/02678290903568495

    Article  CAS  Google Scholar 

  5. Sahraoui AH, Delenclos S, Longuemart S, Dadarlat D (2011) Heat transport in polymer-dispersed liquid crystals under electric field. (Report). J Appl Phys 110(3):033510-1–033510-5. doi:10.1063/1.3610445

  6. Zumer S (1988) Light scattering from nematic droplets: anomalous-diffraction approach. Phys Rev A 37(10):4006–4015. doi:10.1103/PhysRevA.37.4006

    Article  CAS  Google Scholar 

  7. Whitehead JB, Zumer S, Doane JW (1993) Light scattering from a dispersion of aligned nematic droplets. J Appl Phys 73(3):1057–1065. doi:10.1063/1.353292

    Article  CAS  Google Scholar 

  8. Cho YH, Kim BK (1998) Effect of monoacrylate type in UV curable PU acrylate based bicontinuous polymer/liquid crystal networks. J Polym Sci Part B Polym Phys 36(8):1393–1399. doi:10.1002/(SICI)1099-0488(199806)36:8<1393:AID-POLB13>3.0.CO;2-2

    Article  CAS  Google Scholar 

  9. Xu C, Liu L, Legenski SE, Ning D, Taya M (2004) Switchable window based on electro-chromic polymers. J Mater Res 19(07):2072–2080. doi:10.1557/JMR.2004.0259

    Article  CAS  Google Scholar 

  10. Kumar P, Raina KK (2007) Morphological and electro-optical responses of dichroic polymer dispersed liquid crystal films. Curr Appl Phys 7(9):636–642. doi:10.1016/j.cap.2007.01.004

    Article  Google Scholar 

  11. Cho YH, Kawakami Y (2006) High performance holographic polymer dispersed liquid crystal systems using multi-functional acrylates and siloxane-containing epoxides as matrix components. Appl Phys A Mater Sci Process 83(3):365–375. doi:10.1007/s00339-006-3495-2

  12. Srivastava JK, Singh RK, Dhar R, Singh S (2011) Thermal and morphological studies of liquid crystalline materials dispersed in a polymer matrix. Liq Cryst 38(7):849–859. doi:10(1080/02678292).2011.583995

    Article  CAS  Google Scholar 

  13. Perju E, Marin L, Grigoras VC, Bruma M (2011) Thermo tropic and optical behaviour of new PDLC systems based on a polysulfone matrix and a cyanoazomethine liquid crystal. Liq Cryst 38(7):893–905. doi:10(1080/02678292).2011.585250

    Article  CAS  Google Scholar 

  14. Drazic PS (1995) Liquid crystals dispersions. World Scientific book, Singapore, ISBN-10: 9810217455; ISBN-13: 978-9810217457. doi:dp/9810217455

  15. Murai H, Gotoh T (1993) Stabilization of epoxy-based polymer-dispersed liquid crystal films by addition of excess hardener. Mol Cryst Liq Cryst 226(1):13–23. doi:10.1080/10587259308028788

    Article  CAS  Google Scholar 

  16. Carfagna C, Amendola E, Giamberini M, Hakemi H, Pane S (1997) Liquid crystalline epoxy resins in polymer dispersed liquid crystal composites. Polym Int 44(4):465–473. doi:10.1002/(SICI)1097-0126(199712)44:4<465::AID-PI850>3.0.CO;2-X

    Article  CAS  Google Scholar 

  17. Riccardi CC, Adabbo HE, Williams RJJ (2003) Curing reactions of epoxy resins with diamines. J Appl Poly Sci 29(8):2481–2492. doi:10.1002/app.1984.070290805

    Article  Google Scholar 

  18. Ding XK, Cao M, Liu HJ, Yang H (2008) A study of electro-optical properties of PDLC films prepared by dual UV and heat curing. Liq Cryst 35(5):587–595. doi:10.1080/02678290802028849

    Article  CAS  Google Scholar 

  19. Meng QY, Cao H, Kashima M, Liu HJ, Yang H (2010) Effects of the structures of epoxy monomers on the electro-optical properties of heat-cured polymer-dispersed liquid crystal films. Liq Cryst 37(2):189–193. doi:10.1080/02678290903461402

    Article  CAS  Google Scholar 

  20. Song P, Cao H, Wang F, Liu F, Wang J, Ellahi M, Li F, Yang H (2012) The UV polymerisation temperature dependence of polymer-dispersed liquid crystals based on epoxies/acrylates hybrid polymer matrix components. Liq Cryst 39(9):1131–1140. doi:10.1080/02678292.2012.698755

    Article  CAS  Google Scholar 

  21. Brostow W (1990) Properties of polymer liquid crystals: choosing molecular structures and blending. Polymer 31(06):979–995. doi:10.1016/0032-3861(90)90242-Q

    Article  Google Scholar 

  22. De Sarkar M, Gill NL, Whitehead JB, Crawford GP (2003) Effect of monomer functionality on the morphology and performance of the holographic transmission gratings recorded on polymer dispersed liquid crystals. Macromolecules 36(3):630–638. doi:10.1021/ma020726a

    Article  Google Scholar 

  23. Brostow W, Walasek J (2004) A statistical mechanical model of polymer liquid crystals subjected to external deformations. J Chem Phys 121(07):3272–3281. doi:10.1063/1.1768941

    Article  CAS  Google Scholar 

  24. Kalkar AK, Kunte VV, Deshpande AA (1999) Electro-optic studies on polymer-dispersed liquid crystal composite films. I. Composites of PVB-E7. J Appl Polym Sci 74(14): 3485–3491. doi:10.1002/(SICI)1097-4628(19991227)74:14<3485::AID-APP23>3.0.CO;2-5

    Google Scholar 

  25. Kashima M, Cao H, Meng Q, Liu H, Wang D, Liu F, Yang H (2010) The influence of crosslinking agents on the morphology and electro-optical performances of PDLC films. J Appl Polym Sci 117(6):3434–3440. doi:10.1002/app.32101

    CAS  Google Scholar 

  26. Park NH, Cho SA, kim JY, Suh KD (2000) Preparation of polymer-dispersed liquid crystal films containing a small amount of liquid crystalline polymer and their properties. J Appl Polym Sci 77:3178–3188. doi:10.1002/1097-4628(20000929)77:14<3178:AID-APP190>3.0.CO;2-E

    Article  CAS  Google Scholar 

  27. Li W, Cao H, Kashima M, Liu F, Cheng Z, Yang Z, Zhu S, Yang H (2008) Control of the microstructure of polymer network and effects of the microstructures on light scattering properties of UV-cured polymer-dispersed liquid crystal films. J Poly Sci Part B Polym Phys 46:2090–2099. doi:10.1002/polb.21543

    Article  CAS  Google Scholar 

  28. Voytekunas VY, Ng FL, Abadie MJM (2008) Kinetics study of the UV-initiated cationic polymerization of cycloaliphatic di epoxide resins. Eur Polymer J 44:3640–3649. doi:10.1016/j.eurpolymj.2008.08.043

    Article  CAS  Google Scholar 

  29. Cho JD, Hong JW (2005) Photo-curing kinetics for the UV-initiated cationic polymerization of a cycloaliphatic diepoxide system photosensitized by thioxanthone. Eur Polym J 41:367–374. doi:10.1016/j.eurpolymj.2004.10.006

    Article  CAS  Google Scholar 

  30. Boey FYC, Qiang W (2000) Experimental modelling of the cure kinetics of an epoxy-hexaanhydro-4-methylphthalicanhydride (MHHPA) system. Polymer 41:2081–2094. doi:10.1016/S0032-3861(99)00409-7

    Article  CAS  Google Scholar 

  31. West JH (1990) Polymer-dispersed liquid crystals, liquid-crystalline polymers. ACS Symposium Series, chap 32, vol 435. American Chemical Society, Washington, DC, pp 475–495

  32. Li WB, Zhang HX, Wang LP, Ouyang CB, Ding XK, Cao H, Yang H (2007) Effect of a chiral dopant on the electro-optical properties of polymer-dispersed liquid-crystal films. J Appl Polym Sci 105(4):2185–2189. doi:10.1002/app.26201

    Article  CAS  Google Scholar 

  33. Kikuchi H, Usui F, Kajiyama T (1996) Control of phase-separated structure in (polymer/liquid crystal) composite films and their electro-optical switching characteristics. Polym J 28(1):35–40. doi:10.1295/polymj.28.35

    Article  CAS  Google Scholar 

  34. Amundson K, van Blaaderen A, Wiltzius P (1997) Morphology and electro-optic properties of polymer-dispersed liquid-crystal films. Phys Rev E 55(2):1646–1654. doi:10.1103/PhysRevE.55.1646

    Article  CAS  Google Scholar 

  35. Petti L, Mormile P, Blau WJ (2003) Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals. Optics 39(3):369–377. doi:10.1016/S0143-8166(01)00119-1

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Fund for Distinguished Young Scholars (Grant No. 51025313), the National Natural Science Foundation (Grant No. 50973010), the National Natural Science Foundation (Grant No. 51173003), the National Natural Science Foundation (Grant No. 51143001), the Research Fund of the State Key Laboratory for Advanced Metals and Materials, the Open Research Fund of the State Key Laboratory of Bioelectronics (Southeast University) and the Fundamental Research Funds for t he Central Universities (Grant No.FRF-TP-12-032A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Cao or Huai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellahi, M., Liu, F., Song, P. et al. Influence of the multi-functional epoxy monomers structure on the electro-optical properties and morphology of polymer-dispersed liquid crystal films. Polym. Bull. 70, 2967–2980 (2013). https://doi.org/10.1007/s00289-013-1000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-1000-6

Keywords

Navigation