Skip to main content

Advertisement

Log in

Hyperbranched polyurethane/Fe3O4 thermosetting nanocomposites as shape memory materials

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nanocomposites of hyperbranched polyurethane were prepared by the in situ pre-polymerization technique with Fe3O4 nanoparticles. The synthesized Fe3O4 nanoparticles were characterized by the Fourier transform infrared spectroscopy and the X-ray diffraction study. The transmission electron microscopic study indicates the homogeneous distribution of Fe3O4 nanoparticles in the polymer matrix. The mechanical, thermal and shape memory behaviors of the nanocomposites were studied as a function of nanomaterial content. The glycidyl bisphenol-A based epoxy cured thermosetting nanocomposites exhibited significant improvement of tensile strength (5.7–18 MPa), scratch hardness (3.0–6.5 kg) and thermal stability (241–275 °C) with the increase of the content of Fe3O4. The nanocomposites possess excellent shape fixity over the repeated cycles of test. They also showed good shape recovery under the application of microwave energy. The shape recovery speed found to increase with the increase of the loading of Fe3O4 in the nanocomposites. Thus, the prepared nanocomposites might be utilized as advanced shape memory materials in their potential fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Luo X, Mather PT (2009) Preparation and characterization of shape memory elastomeric composites. Macromolecules 42:7251–7253

    Article  CAS  Google Scholar 

  2. Lu XL, Cai W, Gao Z, Tang WJ (2007) Shape memory effects of poly(l-lactide) and its copolymer with poly(ε-caprolactone). Polym Bull 58:381–391

    Article  CAS  Google Scholar 

  3. Kang SM, Kwon SH, Park JH, Kim BK (2013) Carbon nanotube reinforced shape memory polyurethane foam. Polym Bull 70:885–893

    Article  CAS  Google Scholar 

  4. Wu L, Jin C, Sun X (2011) Synthesis, properties, and light-induced shape memory effect of multiblock polyester urethanes. Biomacromolecules 12:235–241

    Article  CAS  Google Scholar 

  5. Lee KM, Koerner H, Vaia RA, Bunning TJ, White TJ (2011) Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7:4318–4324

    Article  CAS  Google Scholar 

  6. Chen S, Hu J, Yuen CW (2009) Novel moisture-sensitive shape memory polyurethanes containing pyridine moieties. Polymer 50:4424–4428

    Article  CAS  Google Scholar 

  7. Schmidt AM (2006) Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromol Rapid Commun 27:1168–1172

    Article  CAS  Google Scholar 

  8. Lee HF, Yu HH (2011) Study of electroactive shape memory polyurethane–carbon nanotube hybrids. Soft Matter 7:3801–3807

    Article  CAS  Google Scholar 

  9. Liu C, Qin H, Mather PT (2007) Review of progress in shape-memory polymers. J Mater Chem 17:1543–1558

    Article  CAS  Google Scholar 

  10. Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, Li M (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80A:333–341

    Article  CAS  Google Scholar 

  11. Ni S, Lin S, Pan Q, Yang F, Huang K, He D (2009) Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J Phys D Appl Phys 42:055004–055009

    Article  Google Scholar 

  12. Ni S, Wang X, Zhou G, Yang F, Wang J, He D (2010) Designed synthesis of wide range microwave absorption Fe3O4-carbon sphere composite. J Alloys Compd 489:252–256

    Article  CAS  Google Scholar 

  13. Mahesh KPO, Alagar M (2003) Preparation and characterization of chain-extended bismaleimide modified polyurethane–epoxy matrices. J Appl Polym Sci 87:1562–1568

    Article  CAS  Google Scholar 

  14. Murali M, Ratna D, Samui AB, Chakraborty BC (2007) Synthesis, characterization and evaluation of carboxyl-terminated poly(ethylene glycol) adipate-modified epoxy networks: effect of molecular weight. J Appl Polym Sci 103:1723–1730

    Article  CAS  Google Scholar 

  15. Guo Z, Park S, Wei S, Pereira T, Moldovan M, Karki AB, Young DP, Hahn HT (2007) Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization. Nanotechnology 18:335704–335712

    Article  Google Scholar 

  16. Mathad JK, Rao R (2012) Characterization studies on (PoIypyrrole/Fe 3 O 4)- polyurethane nanocomposite conductive films. J Polym Mater 29:127–136

    CAS  Google Scholar 

  17. Das B, Mandal M, Upadhyay A, Chattopadhyay P, Karak N (2013) Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites: smart antibacterial biomaterials for biomedical devices and implants. Biomed Mater 8:035003–035015

    Article  CAS  Google Scholar 

  18. Cuevas JM, Rubio R, Laza JM, Vilas JL, Rodriguez M, Léon LM (2012) Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Mater Struct 21:035004–035013

    Article  Google Scholar 

  19. Haghayegh M, Sadeghi GMM (2012) Synthesis of shape memory polyurethane/clay nanocomposites and analysis of shape memory, thermal, and mechanical Properties. Polym Compos 33:843–849

    Article  CAS  Google Scholar 

  20. Dutta S, Karak N (2006) Effect of the NCO/OH ratio on the properties of Mesua ferrea L. seed oil-modified polyurethane resins. Polym Int 55:49–56

    Article  CAS  Google Scholar 

  21. Kalita H, Karak N (2012) Mesua ferrea L. seed oil-based hyperbranched shape memory polyurethanes: effect of multifunctional component. Polym Eng Sci 52:2454–2461

    Article  CAS  Google Scholar 

  22. Zhang Y, Heath RJ, Hourston DJ (2000) Morphology, mechanical properties, and thermal stability of polyurethane-epoxide resin interpenetrating polymer network rigid foams. J Appl Polym Sci 75:406–416

    Article  CAS  Google Scholar 

  23. Desai SD, Emanuel AL, Sinha VK (2003) Polyester polyol-based polyurethane adhesive; effect of treatment on rubber surface. J Polym Res 10:141–149

    Article  CAS  Google Scholar 

  24. Park JO, Rhee KY, Park SJ (2010) Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites. Appl Surf Sci 256:6945–6950

    Article  CAS  Google Scholar 

  25. Liu L, Zheng Z, Gu C, Wang X (2010) The poly(urethane-ionic liquid)/multi-walled carbon nanotubes composites. Compos Sci Technol 70:1697–1703

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude and thanks to the research project assistance granted by the Department of Science and Technology (DST), India through the Grant No. SR/S3/ME/0020/2009-SERC, dated 9th July, 2010, SAP (University Grants Commission, UGC), India through grant No. F.3-30/2009 (SAP-II) and FIST program-2009 (DST), India through the Grant No.SR/FST/CSI-203/209/1 dated 06.05.2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niranjan Karak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalita, H., Karak, N. Hyperbranched polyurethane/Fe3O4 thermosetting nanocomposites as shape memory materials. Polym. Bull. 70, 2953–2965 (2013). https://doi.org/10.1007/s00289-013-0999-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0999-8

Keywords

Navigation