Skip to main content
Log in

Crystallization of poly(lactic acid) enhanced by phthalhydrazide as nucleating agent

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The effect of phthalhydrazide compound on the nonisothermal and isothermal crystallization behavior of bio-based and biodegradable poly(lactic acid) (PLA) was investigated by differential scanning calorimetry and polarized optical microscopy. The nonisothermal melt crystallization of PLA started much earlier in the presence of phthalhydrazide even at a phthalhydrazide content as low as 0.1 wt%. The isothermal crystallization kinetics was analyzed by the Avrami model. It was found that the Avrami exponent of the PLA crystallization was not significantly influenced by the addition of phthalhydrazide, indicating that the crystallization mechanism almost did not change in the composites. The crystallization half-time of PLA/phthalhydrazide composites decreased significantly with increase in phthalhydrazide loading. The observation from optical microscopy showed that the presence of phthalhydrazide increased the number of nucleation sites. The above observations indicate that phthalhydrazide is an efficient nucleating agent of PLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21:117–132

    Article  CAS  Google Scholar 

  2. Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  CAS  Google Scholar 

  3. Wang Y, Li M, Shen C (2011) Effect of constrained annealing on the microstructures of extrusion cast polylactic acid films. Mater Lett 65:3525–3528

    Article  CAS  Google Scholar 

  4. Ghosh S, Viana JC, Reis RL, Mano JF (2007) Effect of processing conditions on morphology and mechanical properties of injection-molded poly(L-lactic acid). Polym Eng Sci 47:1141–1147

    Article  CAS  Google Scholar 

  5. Wang Y, Ribelles JLG, Sanchez MS, Mano JF (2005) Morphological contributions to glass transition in poly(L-lactic acid). Macromolecules 38:4712–4718

    Article  CAS  Google Scholar 

  6. Li M, Hu D, Wang Y, Shen C (2010) Nonisothermal crystallization kinetics of poly(lactic acid) formulations comprising talc with poly(ethylene glycol). Polym Eng Sci 50:2298–2305

    Article  CAS  Google Scholar 

  7. Li H, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866

    Article  CAS  Google Scholar 

  8. Su Z, Guo W, Liu Y, Li Q, Wu C (2009) Non-isothermal crystallization kinetics of poly(lactic acid)/modified carbon black composite. Polym Bull 62:629–642

    Article  CAS  Google Scholar 

  9. Wang H, Qiu Z (2012) Crystallization kinetics and morphology of biodegradable poly(L-lactic acid)/graphene oxide nanocomposites: influences of graphene oxide loading and crystallization temperature. Thermochim Acta 527:40–46

    Article  CAS  Google Scholar 

  10. Wang H, Qiu Z (2011) Crystallization behaviors of biodegradable poly(L-lactic acid)/graphene oxide nanocomposites from the amorphous state. Thermochim Acta 526:529–536

    Article  Google Scholar 

  11. Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre JM, Seguela R (2011) Crystallization behavior of carbon nanotube polylactide-nanocomposites. Macromolecules 44:6496–6502

    Article  CAS  Google Scholar 

  12. Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J, Wang H (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Interfaces 3:3744–3753

    Article  CAS  Google Scholar 

  13. Zhao Y, Qiu Z, Yang W (2009) Effect of multi-walled carbon nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). Compos Sci Technol 69:627–632

    Article  CAS  Google Scholar 

  14. Zhao Y, Qiu Z, Yang W (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J Phys Chem B 112:16461–16468

    Article  CAS  Google Scholar 

  15. Ray SS, Maiti P, Okamoto M, Yamada K, Ueda K (2002) New polylactide/layered silicate nanocomposites. 1. preparation, characterization, and properties. Macromolecules 35:3104–3110

    Article  CAS  Google Scholar 

  16. Yu J, Qiu Z (2011) Preparation and properties of biodegradable poly(L-lactide)/octamethyl-polyhedral oligomeric silsesquioxanes nanocomposites with enhanced crystallization rate via simple melt compounding. ACS Appl Mater Interfaces 3:890–897

    Article  CAS  Google Scholar 

  17. Yu J, Qiu Z (2011) Effect of low octavinyl-polyhedral oligomeric silsesquioxanes loadings on the melt crystallization and morphology of biodegradable poly(L-lactide). Thermochim Acta 519:90–95

    Article  CAS  Google Scholar 

  18. Yu J, Qiu Z (2011) Isothermal and nonisothermal cold crystallization behaviors of biodegradable poly(L-lactide)/octavinyl-polyhedral oligomeric silsesquioxanes nanocomposites. Ind Eng Chem Res 50:12579–12586

    Article  CAS  Google Scholar 

  19. Pan H, Qiu Z (2010) Biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules 43:1499–1506

    Article  CAS  Google Scholar 

  20. Qiu Z, Pan H (2010) Preparation, crystallization and hydrolytic degradation of biodegradable poly(L-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites. Compos Sci Technol 70:1089–1094

    Article  CAS  Google Scholar 

  21. Song P, Chen G, Wei Z, Chang Y, Zhang W, Liang J (2012) Rapid crystallization of poly(L-lactic acid) induced by a nanoscaled zinc citrate complex as nucleating agent. Polymer 53:4300–4309

    Article  CAS  Google Scholar 

  22. Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(L-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1:402–411

    Article  CAS  Google Scholar 

  23. Tsuji H, Takai H, Saha SK (2006) Isothermal and non-isothermal crystallization behavior of poly(L-lactic acid): effects of stereocomplex as nucleating agent. Polymer 47:3826–3837

    Article  CAS  Google Scholar 

  24. Tsuji H, Sawada M, Bouapao L (2009) Biodegradable polyesters as crystallization-accelerating agents of poly(L-lactide). ACS Appl Mater Interfaces 1:1719–1730

    Article  CAS  Google Scholar 

  25. Zhang R, Wang Y, Wang K, Zheng G, Li Q, Shen C (2013) Crystallization of poly(lactic acid) accelerated by cyclodextrin complex as nucleating agent. Polym Bull 70:195–206

    Article  CAS  Google Scholar 

  26. Wang Y, Tong B, Hou S, Li M, Shen C (2011) Transcrystallization behavior at the poly(lactic acid)/sisal fibre biocomposite interface. Compos Part A 42:66–74

    Article  CAS  Google Scholar 

  27. Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47:1340–1347

    Article  CAS  Google Scholar 

  28. Li J, Chen D, Gui B, Gu M, Ren J (2011) Crystallization morphology and crystallization kinetics of poly(lactic acid): effect of N-aminophthalimide as nucleating agent. Polym Bull 67:775–791

    Article  CAS  Google Scholar 

  29. Qiu Z, Li Z (2011) Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(L-lactide) as an efficient nucleating agent. Ind Eng Chem Res 50:12299–12303

    Article  CAS  Google Scholar 

  30. Bai H, Zhang W, Deng H, Zhang Q, Fu Q (2011) Control of crystal morphology in poly(L-lactide) by adding nucleating agent. Macromolecules 44:1233–1237

    Article  CAS  Google Scholar 

  31. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Nucleating agent for poly(L-lactic acid): an optimization of chemical structure of hydrazide compound for advanced nucleation ability. J Appl Polym Sci 103:198–203

    Article  CAS  Google Scholar 

  32. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) Physical and mechanical properties of poly(L-lactic acid) nucleated by dibenzoylhydrazide compound. J Appl Polym Sci 103:244–250

    Article  CAS  Google Scholar 

  33. Di Lorenzo ML (2005) Crystallization behavior of poly(L-lactic acid). Eur Polym J 41:569–575

    Article  Google Scholar 

  34. He Y, Inoue Y (2003) α-Cyclodextrin-enhanced crystallization of poly(3-hydroxybutyrate). Biomacromolecules 4:1865–1867

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the Major Project in Public Interest of Henan Province (HNZB [2011] N91), the National Natural Science Foundation of China (50873094) and the National Key Project for Basic Research of China (2012CB025903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., He, D., Wang, X. et al. Crystallization of poly(lactic acid) enhanced by phthalhydrazide as nucleating agent. Polym. Bull. 70, 2911–2922 (2013). https://doi.org/10.1007/s00289-013-0996-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0996-y

Keywords

Navigation