Skip to main content

Advertisement

Log in

Hemocompatibility, swelling and thermal properties of hydrogels based on 2-hydroxyethyl acrylate, itaconic acid and poly(ethylene glycol) dimethacrylate

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Two series of novel hydrogels, based on 2-hydroxyethyl acrylate (HEA), itaconic acid (IA), and two poly(ethylene glycol) dimethacrylates (PEGDMA), of different ethylene glycol chain lengths, were prepared by free radical crosslinking copolymerization. The influence of different ethylene glycol chain lengths and concentration in P(HEA/IA/PEGDMA) hydrogels on biocompatibility, swelling and thermal properties was investigated. All samples in contact with blood showed a mean hemolysis value <1.0 % in the direct contact assay, and even <0.5 % in the indirect contact assay, for in vitro testing conditions. Swelling studies, conducted in a physiological pH and temperature range, showed pH sensitivity and relatively small changes of equilibrium swelling with temperature, which varied with PEGDMA molecular weight. The glass transition temperatures (T g) of P(HEA/IA/PEGDMA) networks were in the range 28.1–36.9 °C, respectively, and also dependent on copolymer composition. Due to good biocompatibility, favorable swelling, and thermal properties these hydrogels show good potential for biomedical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Peppas NA, Huang Y, Torres-Lugo M, Ward JH, Zhang J (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2:9–29

    Article  CAS  Google Scholar 

  2. Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms & bioengineering applications. Prog Polym Sci 32:1205–1237

    Article  CAS  Google Scholar 

  3. Schmaljohann B (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  Google Scholar 

  4. Brahim S, Narinesingh D, Elie AG (2003) Synthesis and hydration properties of pH-sensitive p(HEMA)-based hydrogels containing 3-(trimethoxysilyl)propyl methacrylate. Biomacromolecules 4:497–503

    Article  CAS  Google Scholar 

  5. Kou JH, Fleisher D, Amidon GL (1990) Modeling drug release from dynamically swelling poly(hydroxyethyl methacrylate-co-methacrylic acid) hydrogels. J Control Release 12:241–250

    Article  CAS  Google Scholar 

  6. Albin G, Horbett TA, Miller SR, Ricker NL (1987) Theoretical and experimental studies of glucose sensitive membranes. J Control Release 6:267–291

    Article  CAS  Google Scholar 

  7. Bajpai AK, Shukla SK, Bhanu S, Kankane S (2008) Responsive polymers in controlled drug delivery. Prog Polym Sci 33:1088–1118

    Article  CAS  Google Scholar 

  8. Tomić SLj, Mićić MM, Filipović JM, Suljovrujić EH (2010) Synthesis, characterization and controlled release of cephalexin from smart poly(2-hydroxyethyl methacrylate/poly(alkylene glycol)(meth) acrylates hydrogels. Chem Eng J 160:801–809

    Article  Google Scholar 

  9. Dobić SN, Filipović JM, Tomić SLj (2012) Synthesis and characterization of poly(2-hydroxyethyl methacrylate/itaconic acid/poly(ethylene glycol) dimethacrylate) hydrogels. Chem Eng J 179:372–380

    Article  Google Scholar 

  10. Kakwere H, Perrier S (2011) Design of complex polymeric architectures and nanostructured materials/hybrids by living radical polymerization of hydroxylated monomers. Polym Chem 2:270–288

    Article  CAS  Google Scholar 

  11. Montheard JP, Chatzopoulos M, Chappard DJ (1992) 2-hydroxyethyl methacrylate (HEMA); chemical properties and applications in biomedical fields. J Macromol Sci Macromol Rev 32:1–34

    Article  Google Scholar 

  12. Mark HF (2007) Encyclopedia of polymer science and technology. Wiley, New York

    Google Scholar 

  13. Tomić SLj, Mićić MM, Filipović JM, Suljovrujić EH (2007) Swelling and drug release behavior of poly(2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels obtained by gamma irradiation. Radiat Phys Chem 76:801–810

    Article  Google Scholar 

  14. Inam R, Caykara T, Ozyurek C (2001) Polarographic determination of uranyl ion adsorption on poly-(2-hydroxyethyl methacrylate/itaconic acid) hydrogels. Sep Sci Technol 36:1451–1461

    Article  CAS  Google Scholar 

  15. Ozyurek C, Caykara T, Inam R (2003) Enhancement of uranyl ion uptake by the prestructuring of poly(2-hydroxyethyl methacrylate itaconic acid) hydrogels in the presence of lead and cadmium ions/polarographic determination. J Appl Polym Sci 90:2385–2390

    Article  Google Scholar 

  16. Hamdy SM, El-Sigeny S, Abou Taleb MF (2008) Immobilization of urease on (HEMA/IA) hydrogel prepared by gamma radiation. J Macromol Sci A 45:982–989

    Google Scholar 

  17. Tomić SLj, Suljovrujić EH, Filipović JM (2006) Biocompatible and bioadhesive hydrogels based on 2-hydroxyethyl methacrylate, monofunctional poly(alkylene glycol)s and itaconic acid. Polym Bull 57:691–702

    Article  Google Scholar 

  18. Lin CC, Anseth KS (2009) PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharm Res 26:631–643

    Article  CAS  Google Scholar 

  19. Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351

    Article  CAS  Google Scholar 

  20. Mellott MB, Searcy K, Pishko MV (2001) Release of protein from highly crosslinked hydrogels poly(ethylene glycol) diacrylate fabricated by UV polymerization. Biomaterials 22:929–941

    Article  CAS  Google Scholar 

  21. Gallego Ferrer G, Salmerón Sánchez M, Gómez Ribelles JL, Romero Colomer FJ, Monleón Pradas M (2007) Nanodomains in a hydroplylic–hydrophobic IPN based on poly(2-hydroxyethyl acrylate) and poly(ethyl acrylate). Eur Polym J 43:3136–3145

    Article  Google Scholar 

  22. Jeon SI, Lee JH, Andrade JD, De Gennes PG (1991) Protein–surface interactions in the presence of polyethylene oxide. J Colloid Interf Sci 142:149–158

    Article  CAS  Google Scholar 

  23. Nagaoka S, Mori Y, Takiuchi H, Yokota K, Tanzawa H, Nichiumi S (1984) Interaction between blood components and hydrogels with poly(oxyethylene) chains. Plenum Press, New York

    Google Scholar 

  24. Al-Nasassrah MA, Podczeck F, Newton JM (1998) The effect of an increase in chain length on the mechanical properties of polyethylene glycols. Eur J Pharm Biopharm 46:31–38

    Article  CAS  Google Scholar 

  25. Gunn JW, Turner SD, Mann BK (2005) Adhesive and mechanical properties of hydrogels influence neurite extension. J Biomed Mater Res A 72:91–97

    Article  Google Scholar 

  26. Padmavathi NC, Chatterji PR (1996) Structural characterization and swelling behavior of poly(ethylene glycol) diacrylate hydrogels. Macromolecules 29:1976–1979

    Article  CAS  Google Scholar 

  27. Peyton SR, Raub CB, Keschrumrus VP, Putnam AJ (2006) The use of poly(ethylene glycol) hydrogels to investigate the impact of ECM chemistry and mechanics on smooth muscle cells. Biomaterials 27:4881–4893

    Article  CAS  Google Scholar 

  28. Nemir S, Hayenga HN, West JL (2010) PEGDA hydrogels with patterned elasticity: novel tools for the study of cell response to substrate rigidity. Biotechnol Bioeng 105:636–644

    Article  CAS  Google Scholar 

  29. Tomić SLj, Mićić MM, Dobić SN, Filipović JM, Suljovrujić EH (2010) Smart Poly(2-hydroxyethyl methacrylate/itaconic acid) hydrogels for biomedical application. Radiat Phys Chem 79:643–649

    Article  Google Scholar 

  30. Tomić SLj, Jovašević JS, Filipović JM, Dobić SN (2010) 2nd Conference Innovation in Drug Delivery, Aix-en-Provence, France, Programme and Abstracts, p 154

  31. Pertruccioli M, Pulchi V, Federici F (1999) Itaconic acid production by Aspergillus terreus on raw starchy materials. Lett Appl Microbial 28:309–312

    Article  Google Scholar 

  32. Pal K, Banthia AK, Majumdar DK (2006) Starch based hydrogel with potential biomedical application as artificial skin. Afr J Biomed Res 9:23–29

    Google Scholar 

  33. ISO document (1992) 10, 993–5: Part 4

  34. (2003) Guide to the preparation, use and quality assurance of blood components, 9th edn. Council of Europe Publishing Strasbourg, France

  35. (1986) FDA summary basis of approval for red blood cells frozen and red blood cells deglycerolized (Reference number 86-0335). US License Number 635-10. Applicant-Department of the Navy, Navy Hospital, Bethesda

  36. Han V, Serrano K, Devine DV (2010) A comparative study of common techniques used to measure haemolysis in stored red cell concentrates. Vox Sang 98:116–123

    Article  CAS  Google Scholar 

  37. Bell CL, Peppas NA (1995) Measurement of the swelling force in ionic polymer networks. III. Swelling force of interpolymer complexes. J Control Release 37:277–280

    Article  CAS  Google Scholar 

  38. Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60:110–111

    CAS  Google Scholar 

  39. Park JB, Lakes RS (2007) Tissue Response to Implants. In: Biomaterials. Springer, Berlin, pp 266–288

  40. Pizzoferrato A, Vespucci A, Ciapetti G, Stea S (1985) Biocompatibility testing of prosthetic implant materials by cell culture. Biomaterials 6:346–351

    Article  CAS  Google Scholar 

  41. Williams D (1991) Objectivity in the evaluation of biological safety of medical devices and biomaterials. Med Device Technol 2:44–48

    CAS  Google Scholar 

  42. Bruck SD (1980) Problems and artifacts in the evaluation of polymeric materials for medical uses. Biomaterials 1:103–107

    Article  CAS  Google Scholar 

  43. Williams DF (1981) Biomaterials and Biocompatibility. CRC Press, Boca Raton

    Google Scholar 

  44. Sharp MK, Mohammad SF (1998) The scaling of haemolysis in needles and catheters. Ann Biomed Eng 26:788–797

    Article  CAS  Google Scholar 

  45. Tomić SLj, Dimitrijević SI, Marinković AD, Najman S, Filipović JM (2009) Synthesis and characterization of poly (2-hydroxyethyl methacrylate/itaconic acid) copolymeric hydrogels. Polym Bull 63:837–851

    Article  Google Scholar 

  46. Mishra A, Chaudhary N (2010) Study of povidone iodine loaded hydrogels as wound dressing material. Trends Biomater Artif Organs 23:122–128

    Google Scholar 

  47. Caykara T, Dogmus M, Kantoglu OJ (2004) Network structure and swelling-shrinking behaviors of pH-sensitive poly(acrylamide-co-itaconic acid) hydrogels. Polym Sci Part B Pol Phys 42:2586–2594

    Article  CAS  Google Scholar 

  48. Canal T, Peppas NA (1989) Correlation between mesh size and equilibrium degree of swelling of polymeric networks. J Biomed Mater Res 23:1183–1193

    Article  CAS  Google Scholar 

  49. Gudeman LF, Peppas NA (1995) pH-Sensitive membranes from poly (vinyl alcohol)/poly (acrylic acid) interpenetrating networks. J Membr Sci 107:239–248

    Article  CAS  Google Scholar 

  50. Aran B, Sankir M, Vargun E, Sankir ND, Usanmaz A (2010) Tailoring the swelling and glass-transition temperature of acrylonitrile/hydroxyethyl acrylate copolymers. J Appl Polym Sci 116:628–635

    CAS  Google Scholar 

  51. Spanoudaki A, Fragiadakis D, Vartzelinikaki K, Pissis P, Rodriguez Hernandez JC, Monleon Pradas M (2006) Nanostructured and nanocomposite hydrogels for biomedical applications. In: Blitz JP, Gun’ko VM (eds) Surface chemistry in biomedical and environmental science. Springer, Berlin, pp 229–240

  52. Gomez Ribelles JL, Monleon Pradas M, Gallego Ferrer G, Peidro Torres N, Perez Gimenez V, Pissis P, Kyritsis AJ (1999) Poly(methyl acrylate)/poly(hydroxyethyl acrylate) sequential interpenetrating polymer networks. Miscibility and water sorption behavior. Poly Sci Part B Pol Phys 37:1587–1599

    Article  CAS  Google Scholar 

  53. Russell GA, Hiltner PA, Gregonis DE, Visser AC, Andrade JD (1980) Thermal and dynamic mechanical relaxation behavior of stereoregular poly(2-hydroxyethyl methacrylate). J Polym Sci Part B Pol Phys 18:1271–1283

    Article  CAS  Google Scholar 

  54. Fernandez-Garcia M, Torrado MF, Marinez G, Sanchez-Chaves M, Madruga EL (2000) Free radical copolymerization of 2-hydroxyethyl methacrylate with butyl methacrylate. Determination of monomer reactivity ratios and glass transition temperatures. Polymer 41:8001–8008

    Article  CAS  Google Scholar 

  55. Ortiz C, Vasquez B, SanRoman J (1998) Synthesis, characterization and properties of polyacrylic systems derived from vitamin E. Polymer 39:4107–4114

    Article  CAS  Google Scholar 

  56. Caykara T, Ozyurek C, Kantoglu O (2007) Investigation of thermal behavior of poly(2-hydroxyethyl methacrylate-co-itaconic acid) networks. J Appl Polym Sci 103:1602–1607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants No. 172026 and 172062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonida Lj. Tomić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomić, S.L., Jovašević, J.S. & Filipović, J.M. Hemocompatibility, swelling and thermal properties of hydrogels based on 2-hydroxyethyl acrylate, itaconic acid and poly(ethylene glycol) dimethacrylate. Polym. Bull. 70, 2895–2909 (2013). https://doi.org/10.1007/s00289-013-0995-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0995-z

Keywords

Navigation