Skip to main content
Log in

Origin of rheological behavior and surface/interfacial properties of some semi-alicyclic polyimides for biomedical applications

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

High-performance alicyclic-containing polyimides for advanced applications, derived from 5-(2,5-dioxotetrahydrofurfuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride or bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride and two flexible aromatic diamines, were synthesized by a classical two-step polycondensation reaction and analyzed by rheological method. The results were discussed according to the chemical structure of polyimides and their different properties, such as flexibility, hydrophobicity and surface morphology. It has been showed that the obtained parameters, controlled by the interactions occurring in the polyimide systems, can be correlated with the adhesion/cohesion of blood components and plasma proteins. Thus, the results of the work of spreading proteins on the hydrophobic polyimide surfaces indicated that albumin is not absorbed preferentially, while fibrinogen is characterized by a higher degree of adhesion on the surfaces, and also that selective adsorption of plasma proteins modifies blood compatibility. In addition, these results and the ascertained antimicrobial activity of the studied polyimides contribute to the development of new applications in the bio-technical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ando S (2004) Optical properties of fluorinated polyimides and their applications to optical components and waveguide circuits. J Photopolym Sci Technol 17:219–232

    Article  CAS  Google Scholar 

  2. Maier G (2001) Low dielectric constant polymers for microelectronics. Prog Polym Sci 26:3–65

    Article  CAS  Google Scholar 

  3. Gonzalo B, Vilas JL, Breczewski T, Perez-Jubindo MA, De La Fuente MR, Rodriguez M, Leon LM (2009) Synthesis, characterization, and thermal properties of piezoelectric polyimides. J Polym Sci Part A Polym Chem 47:722–730

    Article  CAS  Google Scholar 

  4. Wang S, Zhou HW, Dang GD, Chen C (2009) Synthesis and characterization of thermally stable, high-modulus polyimides containing benzimidazole moieties. J Polym Sci Part A Polym Chem 47:2024–2031

    Article  CAS  Google Scholar 

  5. Zhang QX, Naito K, Tanaka Y, Kagawa Y (2008) Grafting polyimides from nanodiamonds. Macromolecules 41:536–538

    Article  CAS  Google Scholar 

  6. Chang CM, Chang CC (2008) Preparation and characterization of polyimide–nanogold nanocomposites from 3-mercaptopropyl-trimethoxysilane encapsulated gold nanoparticles. Polym Degrad Stabil 93:109–116

    Article  CAS  Google Scholar 

  7. Hougham G, Tesoro G, Viehbeck A, Chapple-Sokolg JD (1994) Polarization effects of fluorine on the relative permittivity in polyimides. Macromolecules 27:5964–5971

    Article  CAS  Google Scholar 

  8. Myung BY, Kim JS, Kim JJ, Yoon TH (2003) Synthesis and characterization of novel polyimides with 2,2-bis[4(4-aminophenoxy)phenyl]phthalein-3′,5′-bis(trifluoromethyl)anilide. J Polym Sci Part A Polym Chem 41:3361–3374

    Article  CAS  Google Scholar 

  9. Yang CP, Hsiao SH, Wu KL (2003) Organosoluble and light-colored fluorinated polyimides derived from 2,3-bis(4-amino-2-trifluoromethylphenoxy)naphthalene and aromatic dianhydrides. Polymer 44:7067–7078

    Article  CAS  Google Scholar 

  10. Yang CP, Su YY, Hsiao FZ (2004) Synthesis and properties of organosoluble polyimides based on 1,1-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]cyclohexane. Polymer 45:7529–7538

    Article  CAS  Google Scholar 

  11. Eichstadt AE, Ward TC, Bagwell MD, Farr IV, Dunson DL, McGrath JE (2002) Synthesis and characterization of amorphous partially aliphatic polyimide copolymers based on bisphenol-A dianhydride. Macromolecules 35:7561–7568

    Article  CAS  Google Scholar 

  12. Chou CH, Reddy DS, Shu CF (2002) Synthesis and characterization of spirobifluorene-based polyimides. J Polym Sci Part A Polym Chem 40:3615–3621

    Article  CAS  Google Scholar 

  13. Chung IS, Kim SY (2000) Soluble polyimides from unsymmetrical diamine with trifluoromethyl pendent group. Macromolecules 33:3190–3193

    Article  CAS  Google Scholar 

  14. Hwang HJ, Li CH, Wang CS (2006) Dielectric and thermal properties of dicyclopentadiene containing bismaleimide and cyanate ester. Part IV. Polymer 47:1291–1299

    Article  CAS  Google Scholar 

  15. Chern YT, Shiue HC (1997) Low dielectric constants of soluble polyimides derived from the novel 4,9-bis[4-(4-aminophenoxy)phenyl]diamantine. Macromolecules 30:5766–5772

    Article  CAS  Google Scholar 

  16. Kreuz JA, Hsiao BS, Renner CA, Goff DL (1995) Crystalline homopolyimides and copolyimides derived from 3,3′,4,4′-biphenyltetracarboxylic dianhydride/1,3-bis(4-aminophenoxy)benzene/1,12-dodecanediamine. 1. Materials, preparation, and characterization. Macromolecules 28:6926–6930

    Article  CAS  Google Scholar 

  17. Hulubei C, Popovici D (2011) Novel polyimides containing alicyclic units. Synthesis and characterization. Rev Roum Chim 56:209–215

    CAS  Google Scholar 

  18. Popovici D, Hulubei C, Cozan V, Lisa G, Bruma M (2012) Polyimides containing cycloaliphatic segments for low dielectric material. High Perform Polym 24:194–199

    Article  CAS  Google Scholar 

  19. Cosutchi AI, Hulubei C, Stoica I, Ioan S (2010) Morphological and structural–rheological relationship in epiclon-based polyimide/hydroxypropylcellulose blend systems. J Polym Res 17:541–550

    Article  CAS  Google Scholar 

  20. Cosutchi AI, Nica SL, Hulubei C, Homocianu M, Ioan S (2012) Effects of the aliphatic/aromatic structure on the miscibility, thermal, optical, and rheological properties of some polyimide blends. Polym Eng Sci 52:1429–1439

    Article  CAS  Google Scholar 

  21. Nica SL, Hulubei C, Stoica I, Ioanid GE, Ioan S (2013) Surface properties and blood compatibility of some aliphatic/aromatic polyimide blends. Polym Eng Sci 53:263–272

    Article  CAS  Google Scholar 

  22. Ioan S, Hulubei C, Popovici D, Musteata VE (2012) Origin of dielectric response and conductivity of some alicyclic polyimides. Polym Eng Sci. doi:10.1002/pen.23409

    Google Scholar 

  23. Cosutchi AI, Hulubei C, Stoica I, Ioan S (2011) A new approach for patterning epiclon-based polyimide precursor films using a lyotropic liquid crystal template. J Polym Res 18:2389–2402

    Article  CAS  Google Scholar 

  24. Hamciuc E, Lungu R, Hulubei C, Bruma M (2006) New poly(imide-ether-amide)s based on epiclon. J Macromol Sci Part A Pure Appl Chem 43:247–258

    Article  CAS  Google Scholar 

  25. Ioanid EG (2008) Ro Patent 122:166

  26. van Oss CJ, Good RJ, Chaudhury MK (1988) Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 4:884–891

    Article  Google Scholar 

  27. Rankl M, Laib S, Seeger S (2003) Surface tension properties of surface-coatings for application in biodiagnostics determined by contact angle measurements. Colloid Surf B Biointerface 30:177–186

    Article  CAS  Google Scholar 

  28. Vijayanand K, Deepak K, Pattanayak DK, Rama Mohan TR, Banerjee R (2005) Interpenetrating blood–biomaterial interactions from surface free energy and work of adhesion. Trends Biomater Artif Organs 18:73–83

    Google Scholar 

  29. Kwok SCH, Wang J, Chu PK (2005) Surface energy, wettability, and blood compatibility phosphorus doped diamond-like carbon films. Diamond Relat Mater 14:78–85

    Article  CAS  Google Scholar 

  30. Agathopoulos S, Nikolopoulos P (1995) Wettability and interfacial interactions in bioceramic-body-liquid systems. J Biomed Mater Res Part A 29:421–429

    Article  CAS  Google Scholar 

  31. van Oss CJ (1990) Surface properties of fibrinogen and fibrin. J Protein Chem 9:487–491

    Article  Google Scholar 

  32. van Oss CJ (2003) Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16:177–190

    Article  Google Scholar 

  33. Wang KL, Liou WT, Liaw DJ, Huang ST (2008) High glass transition and thermal stability of new pyridine-containing polyimides: effect of protonation on fluorescence. Polymer 49:1538–1546

    Article  Google Scholar 

  34. Wang H, Ugomori T, Tanaka K, Kita H, Okamoto KI, Suma Y (2000) Sorption and pervaporation properties of sulfonyl-containing polyimide membrane to aromatic/non-aromatic hydrocarbon mixtures. J Polym Sci Part B Polym Phys 38:2954–2964

    Article  CAS  Google Scholar 

  35. Gupta K, Yaseen M (1997) Viscosity–temperature relationship of dilute solution of poly(vinyl chloride) in cyclohexanone and in its blends with xylene. J Appl Polym Sci 65:2749–2760

    Article  CAS  Google Scholar 

  36. Bas C, Tamagna C, Pascal T, Alberola D (2003) On the dynamic mechanical behavior of polyimides based on aromatic and alicyclic dianhydrides. Polym Eng Sci 43:344–355

    Article  CAS  Google Scholar 

  37. Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969

    Article  CAS  Google Scholar 

  38. Sader E, Pacifico J, Green CP, Mulvaney P (2005) General scaling law for stiffness measurement of small bodies with applications to the atomic force microscope. J Appl Phys 97:124903–124909

    Article  Google Scholar 

  39. Noy A, Vezenov DV, Lieber CM (1997) Chemical force microscopy. Annu Rev Mater Sci 27:381–421

    Article  CAS  Google Scholar 

  40. Labarre D (2001) Improving blood-compatibility of polymeric surfaces. Trends Biomater Artif Organs 15:1–3

    Google Scholar 

  41. Anderson JM (2001) Biological responses to materials. Annu Rev Mater Res 31:81–110

    Article  CAS  Google Scholar 

  42. Ioan S, Filimon A (2012) Biocompatibility and antimicrobial activity of some quaternized polysulfones. In: Bobbarala V (ed) Antimicrobial agents, Book 2, Chap 13. InTech, Rijeka, pp 249–274

  43. Albu RM, Avram E, Stoica I, Ioanid EG, Popovici D, Ioan S (2011) Surface properties and compatibility with blood of new quaternized polysulfones. J Biomater Nanobiotechol 2:114–123

    Article  CAS  Google Scholar 

  44. Kawakami H, Takahashi H, Nagaoka S, Nakayama Y (2001) Albumin adsorption to surface of annealed fluorinated polyimide. Polym Adv Technol 12:244–252

    Article  CAS  Google Scholar 

  45. Nagaoka S, Ashiba K, Kawakami H (2002) Interaction between biocomponents and surface modified fluorinated polyimide. Mater Sci Eng C 20:181–185

    Article  Google Scholar 

  46. Reitsma S, Slaaf DW, Vink H, van Zandvoort MAMJ, oude Egbrink MGA (2007) The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch Eur J Physiol 454:345–359

    Article  CAS  Google Scholar 

  47. Richardson RR Jr, Miller JA, Reichert WM (1993) Polyimides as biomaterials: preliminary biocompatibility testing. Biomaterials 14:627–635

    Article  CAS  Google Scholar 

  48. HajjHassan M, Chodavarapu V, Musallam S (2008) NeuroMEMS: neural probe microtechnologies. Sensors 8:6704–6726

    Article  CAS  Google Scholar 

  49. Ong Y-L, Razatos A, Georgiou G, Sharma MM (1999) Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir 15:2719–2725

    Article  CAS  Google Scholar 

  50. Hren J, Polanc S, Kočevar M (2008) The synthesis and transformations of fused bicyclo[2.2.2]octenes. ARKIVOC (Part (i): Special Issue ‘Reviews and Accounts), pp 209–231

Download references

Acknowledgments

The Romanian National Authority for Scientific Research (CNCS, UEFISCDI; Project PN-II-ID-PCE-2011-3-0937, No. 302/5.10.2011; 2013 phase) is contract grant sponsor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Ioan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioan, S., Filimon, A., Hulubei, C. et al. Origin of rheological behavior and surface/interfacial properties of some semi-alicyclic polyimides for biomedical applications. Polym. Bull. 70, 2873–2893 (2013). https://doi.org/10.1007/s00289-013-0994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0994-0

Keywords

Navigation