Skip to main content
Log in

Synthesis and optical behavior of PLED devices based on (PMMA)/(PAA)/Er(AP)6Cl3 complex and N,N′-didodecyl-3,4,9,10-perylene tetracarboxylic diimide composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The realization of efficient polymeric light emitting diode (PLEDs) in a double-layered configuration was investigated. The devices are composed by transparent conductive oxide (ITO)/MoO3/organic layers/aluminum/selenium, conformed by thin film sandwich structures obtained by vacuum evaporation. Two organic layers were developed. First a n-type organic layer of composite based on polymethylmethacrylate (PMMA)/polyacrilic acid (PAA)/Er(AP)6Cl3 complex and second a n-type organic semiconductor, N,N′-didodecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C12H25). The rare earth complex composites and the perilenic compound were synthesized and characterized using UV–Visible absorption, XPS, and NMR techniques, respectively. Driving voltage of devices was lowered by applying MoO3 thin film as buffer layer and high current intensity efficiency was obtained applying a perilenic film. The effect of MoO3 and PTCDI-C12H25 thin films, on the optical and the physical properties of the electroluminescent devices were discussed. I–V measurements have shown that the structures exhibit diode characteristics and the electroluminescent signal increases when PTCDI-C12H25 thin layer is introduced between the anode and the holes transporting layer. The morphology of the thin films with and without buffer layer indicates that introduction of this layer allows to obtain a homogeneous surface morphology. The results indicate that carrier injection ability and optimized charge balance is obtained to the lowest driving voltage and highest intensities efficiency among the referenced devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB (2009) Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem Rev 109:897–1091. doi:10.1021/cr000013v

    Article  CAS  Google Scholar 

  2. Setlur AA, Shiang JJ, Happek U (2008) Eu2+–Mn2+ phosphor saturation in 5 mm light emitting diode lamps. J Appl Phys Lett 92:081104–081106. doi:10.1063/1.2885093

    Article  Google Scholar 

  3. Zhou Y, Yuan Y, Cao L, Zhang J, Pang H, Lian J, Zhou X (2007) Improved stability of OLEDs with mild oxygen plasma treated PEDOT:PSS. J Lumin 122–123:602–604

    Article  Google Scholar 

  4. Arias AC, MacKenzie JD, McCulloch I, Rivnay J, Salleo A (2010) Materials and applications for large area electronics: solution-based approaches. Chem Rev 110:3–24. doi:10.1021/cr900150b

    Article  CAS  Google Scholar 

  5. Dimitrakopolous CD, Malenfant P (2002) Organic thin film transistors for large area electronics. Adv Mater 14:99–117

    Article  Google Scholar 

  6. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338. doi:10.1021/cr050149z

    Article  Google Scholar 

  7. Cheng Y-J, Yang S-H, Hsu C-S (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923. doi:10.1021/cr900182s

    Article  CAS  Google Scholar 

  8. Nguyen TP, Destruel P, Molinié P (2000) Inorganic and polymer based light emitting diodes. In: Nalwa HS (ed) Handbook of advanced electronic and photonic materials. Academic Press, San Diego

    Google Scholar 

  9. McGehee MD, Bergstedt T, Zhang C, Saab AP, O′Regan MB, Bazan GC, Srdanov VI, Hegger AJ (1999) Narrow bandwidth luminescence from blends with energy transfer from semiconducting conjugated polymers to europium complexes. Adv Mater 11:1349–1354. doi:10.1002/(SICI)1521-4095(199911)11:16<1349:AID-ADMA1349>3.0.CO;2-W

    Article  CAS  Google Scholar 

  10. Sun RG, Wang YZ, Zheng QB, Zhang HJ, Epstein AJ (2000) 1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound. J Appl Phys 87:7589–7591. doi:10.1063/1.373027

    Article  CAS  Google Scholar 

  11. Ji JM, Coffer JL (2002) Impact of erbium-doped silicon nanocrystals on the properties of polyphenylene vinylene films. J Phys Chem B 106:3860–3863. doi:10.1021/jp0140670

    Article  CAS  Google Scholar 

  12. Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102:2357–2368. doi:10.1021/cr010448y

    Article  CAS  Google Scholar 

  13. Slooff LH, Polman A, Cacialli F, Friend RH, Hebbink GA, van Veggel FCJM, Reinhoudt DN (2001) Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex. Appl Phys Lett 78:2122–2124. doi:10.1063/1.1359782

    Article  CAS  Google Scholar 

  14. Harrison BS, Foley TJ, Bouguettaya M, Boncella JM, Reynolds JR, Schanze KS, Shim J, Holloway PH, Padmanaban G, Ramakrishnan S (2001) Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends. Appl Phys Lett 79:3770–3772. doi:10.1063/1.1421413

    Article  CAS  Google Scholar 

  15. Peng J, Takada N, Minami N (2002) Red electroluminescence of a europium complex dispersed in poly(N-vinylcarbazole). Thin Solid Films 405:224–227

    Article  CAS  Google Scholar 

  16. Zheng Y, Fu L, Zhou Y, Yu J, Yu Y, Wang S, Zhang H (2002) Electroluminescence based on a β-diketonate ternary samarium complex. J Mater Chem 12:919–923. doi:10.1039/B110373C

    Article  CAS  Google Scholar 

  17. Peng Junbiao, Takada Noriyuki, Minami Nobutsugu (2002) Red electroluminescence of a europium complex dispersed in poly(N-vinylcarbazole). Thin Solid Films 405:224–227

    Article  CAS  Google Scholar 

  18. Robinson R, Ostrowski JC, Bazan GC, McGehee MD (2003) Reduced operating voltages in polymer light-emitting diodes doped with rare-earth complexes. Adv Mater 15(18):1547–1551

    Article  CAS  Google Scholar 

  19. Song L, Wang J, Hu J, Liu X, Zhen Z (2009) Synthesis and optical properties of a new fluorinated erbium complex/polymer composite material. J Alloy Compd 473:201–205

    Article  CAS  Google Scholar 

  20. Haddon RC, Perel AS, Morris RC, Palstra TTM, Hebard AF, Fleming RM (1995) C60 thin film transistors. Appl Phys Lett 67:121–123. doi:10.1063/1.115503

    Article  CAS  Google Scholar 

  21. Kobayashi S, Takenobu T, Mori S, Fujiwara A, Iwasa Y (2003) Fabrication and characterization of C60 thin-film transistors with high field-effect mobility. Appl Phys Lett 82:4581–4583. doi:10.1063/1.1577383

    Article  CAS  Google Scholar 

  22. Bao Zhenan, Lovinger AndrewJ, Brown Janelle (1998) New air-stable n-channel organic thin film transistors. J Am Chem Soc 120:207–208. doi:10.1021/ja9727629

    Article  CAS  Google Scholar 

  23. Malenfant PRL, Dimitrakopoulos CD, Gelorme JD, Kosbar LL, Graham TO, Curioni A, Andreoni W (2002) N-type organic thin-film transistor with high field-effect mobility based on a N, N′-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative. Appl Phys Lett 80:2517–2519. doi:10.1063/1.1467706

    Article  CAS  Google Scholar 

  24. Chesterfield RJ et al (2004) Organic thin film transistors based on N-alkyl perylene diimides: charge transport kinetics as a function of gate voltage and temperature. J Phys Chem B 108:19281–19292. doi:10.1021/jp046246y

    Article  CAS  Google Scholar 

  25. Godoy A, Cattin L, Bernede JC, Díaz FR, del Valle MA (2011) Effect of perylene as electron acceptor and poly(tetrabromo-p-phenylene Diselenide) as “Buffer Layer” on heterojunction solar cells performances. Macromolecular Symp 304:109–114. doi:10.1002/masy.201150615

    Article  CAS  Google Scholar 

  26. Chua LL, Zaumseil J, Chang JF, Ou ECW, Ho PKH, Sirringhaus H, Friend RH (2005) General observation of n-type field-effect behaviour in organic semiconductors. Nature 434:194–199. doi:10.1038/nature03376

    Article  CAS  Google Scholar 

  27. He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R, Salbeck J (2004) High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers. Appl Phys Lett 85:3911–3913. doi:10.1063/1.1812378

    Article  CAS  Google Scholar 

  28. Meerheim R, Walzer K, Pfeiffer M, Leo K (2006) Ultrastable and efficient red organic light emitting diodes with doped transport layers. Appl Phys Lett 89:61111–61113. doi:10.1063/1.2268354

    Article  Google Scholar 

  29. Soo Yook K, Yeob Lee J (2009) Low driving voltage in organic light-emitting diodes using MoO3 as an interlayer in hole transport layer. Synth Met 159:69–71

    Article  Google Scholar 

  30. Demming S, Langhals H (1988) Very soluble and photostable perylene fluorescent dyes. Chem Ber 121:225–230. doi:10.1002/cber.19881210205

    Article  Google Scholar 

  31. Cattin L, Dahou F, Lare Y, Morsli M, Tricot R, Houari S, Mokrani A, Jondo K, Khelil A, Napo K, Bernede JC (2009) MoO3 surface passivation of the transparent anode in organic solar cells using ultrathin films. J Appl Phys 105:034507–034517. doi:10.1063/1.3077160

    Article  Google Scholar 

  32. Wang F, Qiao X, Xiang T, Ma D (2008) The role of molybdenum oxide as anode interfacial modification in the improvement of efficiency and stability in organic light-emitting diodes. Org Electron 9:985–993

    Article  CAS  Google Scholar 

  33. Latef A, Bernède JC (1991) Study of the thin film interface aluminium–tellurium. Phys Stat Sol 124:243–252. doi:10.1002/pssa.2211240123

    Article  CAS  Google Scholar 

  34. Berredjem Y, Karst N, Boulmokh A, Drici A, Bernède JC (2007) Optimisation of the interface “organic material/aluminium” of CuPc/C60 based photovoltaic cells. Eur Phys J Appl Phys 40:163–167

    Article  CAS  Google Scholar 

  35. Klimin SA, Chukalina EP, Popova MN, Antic-Fidancev E, Aschehoug P, Gaponenko NV, Molchanc IS, Tsyrkunov DA (2004) Absorption and emission spectra of erbium-doped titania xerogels confined in porous anodic alumina. Phys Lett A 323:159–163

    Article  CAS  Google Scholar 

  36. Tauc J, Grigorovici R, Vancu A (1966) Optical properties and electronic structure of amorphous germanium. Phys Status Sol 15:627–637

    Article  CAS  Google Scholar 

  37. Seguy I, Jolinat P, Destruel P, Farence J, Many R, Bock H, Ip J, Nguyen TP (2001) Red organic light emitting device made from triphenylene hexaester and perylene tetraester. J Appl Phys 89:5442–5448. doi:10.1063/1.1365059

    Article  CAS  Google Scholar 

  38. Beamson G, Briggs D (1992) High resolution XPS of organics polymers—the scienta ESCA 300 data base. John-Wiley & Sons, New York

    Google Scholar 

  39. Uwamino Y, Tsuge A, Ishizuka T, Yamatera H (1986) X-Ray photoelectron spectroscopy of rare earth halides. Bull Chem Soc Jpn 59:2263–2267. doi:10.1246/bcsj.59.2263

    Article  CAS  Google Scholar 

  40. Bernède JC, Houari S, Nguyen D, Jouan PY, Khelil A, Mokrani A, Cattin L, Predeep P (2012) XPS study of the band alignment at ITO/oxide (n-type MoO3 or p-type NiO) interface. Phys Status Solidi A 209(7):1291–1297. doi:10.1002/pssa.201127428

    Article  Google Scholar 

  41. Peng J, Takada N, Minami N (2002) Red electroluminescence of a europium complex dispersed in poly(N-vinylcarbazole). Thin Solid Films 405:224–227

    Article  CAS  Google Scholar 

  42. O’Riordan A, O’Connor E, Moynihan S, Nockemann P, Fias P, Van Deun R, Cupertino D, Mackie P, Redmond G (2006) Near infrared electroluminescence from neodymium complex–doped polymer light emitting diodes. Thin Solid Films 497:299–303

    Article  Google Scholar 

Download references

Acknowledgments

Comisión Chilena de Energía Nuclear, Grant No 538. M. Díaz thanks MECESUP UCH0205, 2007–2010 Project, and USA 0707 France internship, Sep–Nov 2010. Special thanks to F. Rabagliati for providing his Polymer laboratory at USACH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. H. Poblete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espinoza, M.S.D., Poblete, V.H., Bernede, J.C. et al. Synthesis and optical behavior of PLED devices based on (PMMA)/(PAA)/Er(AP)6Cl3 complex and N,N′-didodecyl-3,4,9,10-perylene tetracarboxylic diimide composites. Polym. Bull. 70, 2801–2814 (2013). https://doi.org/10.1007/s00289-013-0989-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0989-x

Keywords

Navigation