Skip to main content
Log in

Preparation of proton exchange membranes by radiation-induced grafting of alpha methyl styrene–butyl acrylate mixture onto polyetheretherketone (PEEK) films

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Radiation-induced graft copolymerization of alpha methyl styrene (AMS)–butyl acrylate (BA) mixture onto poly(etheretherketone) (PEEK) was carried out to produce copolymer films which were subsequently sulfonated to develop proton exchange membranes. The characterization of membranes was carried out with infrared spectroscopy (FTIR), differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction analysis (XRD), contact angle and electron probe microanalysis (EPMA). The presence of sulfonic acid groups within the polymer matrix was confirmed by FTIR. The crystallinity of membranes decreased significantly upon sulfonation process. The melting temperature of the membranes also decreased as compared to the virgin and the grafted films. At the same time, glass transition temperature (T g) of membranes increased as the grafting increased. Virgin film showed stable thermogram up to ~500 °C while the grafted film had two-step degradation pattern. Sulfonation introduced one additional decomposition range in the membrane. Contact angle images showed the hydrophilic nature of the membrane surface. The EPMA showed the presence of the sulphur across the membrane matrix in a homogenous manner. The membranes showed low resistivity of 62 Ω cm for the graft level of 27 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Appleby AJ (1996) Recent developments and application of the polymer fuel cell. Phil Trans R Soc Lond A 354:1681–1693. doi:10.1098/rsta.1996.0073

    Article  CAS  Google Scholar 

  2. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10–26. doi:10.1016/j.memsci.2005.01.035

    Article  CAS  Google Scholar 

  3. Shoesmith JP, Collins RD, Oakley MJ, Stevenson DK (1994) Status of solid polymer fuel cell system development. J Power Sources 49:129–142. doi:10.1016/0378-7753(93)01804-Q

    Article  CAS  Google Scholar 

  4. Holmberg S, Holmlund P, Nicolas R, Wilén C, Kallio T, Sundholm G, Sundholm F (2004) Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization. Macromolecules 37:9909–9915. doi:10.1021/ma0353641

    Article  CAS  Google Scholar 

  5. Gupta B, Büchi FN, Scherer GG, Chapiró A (1996) Crosslinked ion exchange membranes by radiation grafting of styrene/divinylbenzene into FEP films. J Membr Sci 118:231–238. doi:10.1016/0376-7388(96)00093-2

    Article  CAS  Google Scholar 

  6. Aricò AS, Baglio V, Cretì P, Blasi AD, Antonucci V, Brunea J, Capotot A, Bozzi A, Schoemans J (2003) Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells. J Power Sources 123:107–115. doi:10.1016/S0378-7753(03)00528-7

    Article  Google Scholar 

  7. Nasef MM, Saidi H, Dahlan KM (2011) Comparative investigations of radiation-grafted proton-exchange membranes prepared using single-step and conventional two-step radiation induced grafting methods. Polym Int 60:186–193. doi:10.1002/pi.2925

    Article  CAS  Google Scholar 

  8. Dargaville TR, George GA, Hill DJT (2003) High energy radiation grafting of fluoropolymers. Progr Polym Sci 28:1355–1376. doi:10.1016/S0079-6700(03)00047-9

    Article  CAS  Google Scholar 

  9. Enomoto K, Takahashi S, Iwase T, Yamashita T, Maekawa Y (2011) Degradation manner of polymer grafts chemically attached on thermally stable polymer films: swelling-induced detachment of hydrophilic grafts from hydrophobic polymer substrates in aqueous media. J Mater Chem 21:9343–9349. doi:10.1039/C0JM04084C

    Article  CAS  Google Scholar 

  10. Hatanaka T, Hasegawa N, Kamiya A, Kawasumi M, Morimoto Y, Kawahara K (2002) Cell performances of direct methanol fuel cells with grafted membranes. Fuel 81:2173–2176. doi:10.1016/S0016-2361(02)00164-3

    Article  CAS  Google Scholar 

  11. Nasef MM, Saidi H, Nor HM (2000) Cation exchange membranes by radiation induced graft copolymerization of styrene onto PFA copolymer films III thermal stability of the membranes. J Appl Polym Sci 77:1877–1885. doi:10.1002/1097-4628(20000829)77:9<1877:AID-APP3>3.0.CO;2-X

    Article  CAS  Google Scholar 

  12. Flint SD, Slade RCT (1997) Investigation of radiation grafted PVDF-g-polystyrene sulphonic acid ion exchange membranes for use in hydrogen oxygen fuel cells. Solid State Ionics 97:299–307. doi:10.1016/S0167-2738(97)00037-4

    Article  CAS  Google Scholar 

  13. Phadnis S, Patri M, Hande VR, Deb PC (2003) Proton exchange membranes by grafting of styrene–acrylic acid onto FEP by preirradiation technique. I. Effect of synthesis conditions. J Appl Polym Sci 90:2572–2577. doi:10.1002/app.12727

    Article  CAS  Google Scholar 

  14. Walsby N, Paronen M, Juhanoja J, Sundholm F (2001) Sulphonation of styrene grafted poly (vinylidene fluoride) films. J Appl Polym Sci 81:1572–1580. doi:10.1002/app.1587

    Article  CAS  Google Scholar 

  15. Paronen M, Sundholm F, Rauhala E, Lehtinen T, Hietala S (1997) Effects of irradiation on sulfonation of poly(vinyl fluoride). J Mater Chem 7:2401–2406. doi:10.1039/A705822E

    Article  CAS  Google Scholar 

  16. Hwang ML, Song JM, Ko BS, Sohn JY, Nho YC, Shin J (2012) Radiation-induced grafting of vinylbenzyl chloride onto a poly(ether ether ketone) film. Nucl Instr Meth Phys Res Sect B Beam Interact Mater Atoms 281:45–80. doi:10.1016/j.nimb.2012.03.025

    Article  CAS  Google Scholar 

  17. Kobayashi T, Rikukawa M, Sanui K, Ogata N (1998) Proton conducting polymers derived from poly (ether–ether ketone) and poly (4-phenoxybenzoyl-1,4 phenylene). Solid State Ionics 106:219–225. doi:10.1016/S0167-2738(97)00512-2

    Article  CAS  Google Scholar 

  18. Bailly C, Williams DJ, Karasz FE, McKnight WJ (1987) The sodium salts of sulfonated poly(aryl ether ether ketone) (PEEK): preparation and characterization. Polymers 28:1009–1016. doi:10.1016/0032-3861(87)90178-9

    Article  CAS  Google Scholar 

  19. Bishop MT, Karasz FE, Russo PS, Langley KH (1985) Solubility and properties of poly(aryl-ether-ketone) in strong acids. Macromolecules 18:86–93. doi:10.1021/ma00143a014

    Article  CAS  Google Scholar 

  20. Hasegawa S, Sato K, Narita T, Suzuki Y, Takahashi S, Morishita N, Maekawa Y (2009) Radiation-induced graft polymerization of styrene into a poly(ether ether ketone) film for preparation of polymer electrolyte membranes. J Membr Sci 345:74–80. doi:10.1016/j.memsci.2009.08.030

    Article  CAS  Google Scholar 

  21. Gübler L, Slaski M, Wokaun A, Scherer GG (2006) Advanced monomer combinations for radiation grafted fuel cell membranes. Electrochem Comm 8:1215–1219. doi:10.1016/j.elecom.2006.05.029

    Article  Google Scholar 

  22. Gupta B, Gautam D, Ikram S (2012) Radiation-induced graft copolymerization of alpha methyl styrene and butyl acrylate mixture into polyetheretherketone films. J Appl Polym Sci 128:1854–1860. doi:10.1002/APP.38365

    Google Scholar 

  23. Gupta B, Gautam D, Ikram S (2012) Structural characterization of alpha methyl styrene–butyl acrylate-grafted polyetheretherketone films. J Appl Polym Sci 128:3205–3212. doi:10.1002/APP.38507

    Google Scholar 

  24. Zaidi SMJ, Mikhailenko SD, Guiver MD, Kaliaguine S (2000) Proton conducting composite membranes from polyetheretherketone and heteropolyacids for fuel cell applications. J Membr Sci 173:17–34. doi:10.1016/S0376-7388(00)00345-8

    Article  CAS  Google Scholar 

  25. Hasegawa S, Suzuki Y, Maekawa Y (2008) Preparation of poly(etheretherketone) based polymer electrolytes for fuel cell membrane using grafting technique. Rad Phys Chem 77:617–621. doi:10.1016/j.radphyschem.2007.09.007

    Article  CAS  Google Scholar 

  26. Chen J, Li D, Koshikawa H, Asano M, Maekawa Y (2010) Crosslinking and grafting of polyetheretherketone film by radiation techniques for application in fuel cells. J Membr Sci 362:488–494. doi:10.1016/j.memsci.2010.07.012

    Article  CAS  Google Scholar 

  27. Gupta B, Scherer GG, Highfield J (1994) Proton exchange membranes by radiation grafting of styrene into FEP films. Thermal characteristics of copolymer membranes. J App Polym Sci 51:1659–1666. doi:10.1002/app.1994.070510916

    Article  CAS  Google Scholar 

  28. Gupta B, Haas O, Scherer GG (1994) Proton exchange membranes by radiation grafting of styrene onto FEP Films. III. Structure of copolymer membranes. J Appl Polym Sci 54:469–476. doi:10.1002/app.1994.070540407

    Article  CAS  Google Scholar 

  29. Büchi FN, Gupta B, Haas O, Scherer GG (1995) Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells. Electrochim Acta 40:345–353. doi:10.1016/0013-4686(94)00274-5

    Article  Google Scholar 

  30. Gupta B, Büchi FN, Staub M, Grman D, Scherer GG (1996) Cation exchange membranes by preirradiation grafting of styrene into FEP films II. Properties of copolymer membranes. J Polym Sci Part A Polym Chem 34:1873–1880. doi:10.1002/(SICI)1099-0518

    Article  CAS  Google Scholar 

  31. Gupta B, Büchi FN, Scherer GG, Chapiro A (1994) Development of radiation-grafted FEP-g-polystyrene membranes: some property–structure correlations. Polym Adv Technol 5:493–498. doi:10.1002/pat.1994.220050905

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors Deepti Gautam is thankful to University Grants Commission (UGC) for the award of senior research fellowship (SRF) to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvanesh Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, B., Gautam, D. & Ikram, S. Preparation of proton exchange membranes by radiation-induced grafting of alpha methyl styrene–butyl acrylate mixture onto polyetheretherketone (PEEK) films. Polym. Bull. 70, 2691–2708 (2013). https://doi.org/10.1007/s00289-013-0981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0981-5

Keywords

Navigation