Skip to main content

Advertisement

Log in

Osteogenic activities of polymeric soybean oil-g-polystyrene membranes

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A novel biocompatible copolymer membrane was synthesized and characterized for use in guided bone regeneration using polymeric soybean oil-g-polystyrene (PSO-g-PS) graft copolymer which was successfully obtained by free radical polymerization of styrene initiated by PSO peroxide as a macroinitiator at 80 °C. Osteoblastic cellular activities of MC3T3-E1 cells on PSO-g-PS membranes with different soybean oil composition (PSO-g-PS1, PSO-g-PS2, and PSO-g-PS3) were evaluated. Nuclear magnetic resonance (1H NMR) spectra showed that PSO inclusion (mol%) was found to be 27, 69, and 51 % for PSO-g-PS1, PSO-g-PS2, and PSO-g-PS3 membranes, respectively. Superior biocompatibility of the PSO-g-PS membranes was determined compared to polystyrene tissue culture plates (TCPS) as positive control. Cell proliferation was enhanced on PSO-g-PS2 and PSO-g-PS3 membranes compared to PSO-g-PS1 membranes (p < 0.001), and a statistically significant higher ALP value of MC3T3-E1 cells on PSO-g-PS2 membranes (p < 0.05) suggested that proliferation and differentiation of preosteoblastic on PSO-g-PS membranes were enhanced with regard to soybean oil content within the membranes. Thus, the present study suggests that PSO-g-PS2 membranes, which showed a favorable biological environment for the preosteoblastic cells, can be well suited for bone tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jung RE, Zwahlen R, Weber FE, Molenberg A, Van Lenthe GH, Hammerle CH (2006) Evaluation of an in situ formed synthetic hydrogel as a biodegradable membrane for guided bone regeneration. Clin Oral Implants Res 17:426–433

    Article  Google Scholar 

  2. Hämmerle CH, Jung RE (2003) Bone augmentation by means of barrier membranes. Periodontology 2000(33):36–53

    Article  Google Scholar 

  3. Hallman M, Sennerby L, Lundgren S (2002) A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. Int J Oral Maxillofac Implants 17(5):635–643

    Google Scholar 

  4. De Macedo NL, De Macedo LG, Monteiro Ado S (2008) Calcium sulfate and PTFE nonporous barrier for regeneration of experimental bone defects. Med Oral Patol Oral Cir Bucal 13:E375–E379

    Google Scholar 

  5. Fujihara K, Kotaki M, Ramakrishna S (2005) Guided bone regeneration membrane made of polycaprolactone/calcium carbonate composite nano-fibers. Biomaterials 26:4139–4147

    Article  CAS  Google Scholar 

  6. Gielkens PFM, Schortinghuis J, de Jong JR, Raghoebar GM, Stegenga B, Bos RRM (2008) Vivosorb (R), Bio-gide (R), and Gore-tex (R) as barrier membranes in rat mandibular defects: an evaluation by microradiography and micro-CT. Clin Oral Implants Res 19:516–521

    Article  Google Scholar 

  7. van Leeuwen AC, Huddleston Slater JJ, Gielkens PF, de Jong JR, Grijpma DW, Bos RR (2012) Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes. Acta Biomater 8:1422–1429

    Article  Google Scholar 

  8. Monteiro ASF, Macedo LGS, Macedo NL, Balducci I (2010) Polyurethane and PTFE membranes for guided bone regeneration: histopathological and ultrastructural evaluation. Med Oral Patol Oral Cir Bucal 1(15):e401–e406

    Article  Google Scholar 

  9. Piattelli A, Scarano A, Paolantonio M (1996) Bone formation inside the material interstices of e-PTFE membranes: a light microscopical and histochemical study in man. Biomaterials 17:1725–1731

    Article  CAS  Google Scholar 

  10. Piattelli A, Scarano A, Russo P, Matarasso S (1996) Evaluation of guided bone regeneration in rabbit tibia using bioresorbable and non-bioresorbable membranes. Biomaterials 17:791–796

    Article  CAS  Google Scholar 

  11. Stavropoulos F, Dahlin C, Ruskin JD, Johansson C (2004) A comparative study of barrier membranes as graft protectors in the treatment of localized bone defects. An experimental study in a canine model. Clin Oral Implan Res 15:435–442

    Article  Google Scholar 

  12. Machtei EE (2001) The effect of membrane exposure on the outcome of regenerative procedures in humans: a meta-analysis. J Periodontol 72:512–516

    Article  CAS  Google Scholar 

  13. Huang J, He H, Sheng L, Gu G (2002) Comparison of calcium alginate film with collagen membrane for guided bone regeneration in mandibular defects in rabbits. J Oral Maxillofac Surg 60:1449–1454

    Article  Google Scholar 

  14. Kikuchi M, Koyama Y, Yamada T, Imamura Y, Okada T, Shirahama N, Akita K, Takakuda K, Tanaka J (2004) Development of guided bone regeneration membrane composed of β-tricalcium phosphate and poly (l-lactide-co-glycolide-co-e-caprolactone) composites. Biomaterials 25:5979–5986

    Article  CAS  Google Scholar 

  15. Can E, Wool RP, Küsefoğlu S (2006) Soybean and castor oil based monomers, synthesis and copolymerization with styrene. J Appl Polym Sci 102:2433–2477

    Article  CAS  Google Scholar 

  16. Ilter S, Hazer B, Borcakli M, Atici O (2001) Graft copolymerization of methyl methacrylate onto bacterial polyester containing unsaturated side chains. Macromol Chem Phys 202:2281–2286

    Article  CAS  Google Scholar 

  17. Biermann U, Bornscheuer U, Meier MAR, Metzger JO, Schafer HJ (2011) Oils and fats as renewable raw materials in chemistry. Angew Chem Int Ed 50:2–20

    Article  Google Scholar 

  18. Guner FS, Usta S, Erciyes AT, Yagci Y (2000) Styrenation of triglyceride oils by macromonomer technique. J Coat Technol 72:107–110

    Article  CAS  Google Scholar 

  19. Ligadas G, Ronda JC, Galia M, Cadiz V (2010) Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art. Biomacromolecules 11:2825–2835

    Article  Google Scholar 

  20. Tan SG, Chow WS (2011) Thermal properties, curing characteristics and water absorption of soybean oil-based thermoset. Express Polym Lett 5:480–492

    Article  CAS  Google Scholar 

  21. Soucek MD, Khattab T, Wu J (2012) Review of autoxidation and driers. Prog Org Coat 73:435–454

    Article  CAS  Google Scholar 

  22. Acar M, Çoban S, Hazer B (2013) Novel water soluble soya oil polymer from oxidized soya oil polymer and diethanolamine. J Macromol Sci Part A: Pure Appl Chem 50:287–296

    CAS  Google Scholar 

  23. Narine SS, Kong X, Bouzidi L, Sporns P (2007) Physical properties of polyurethanes produced from polyols from seed oils: II foams. J Amer Oil Chem Soc 84:65–72

    Article  CAS  Google Scholar 

  24. Xia Y, Larock RC (2010) Vegetable oil-based polymeric materials: synthesis, properties, and applications. Green Chem 12:1893–1909

    Article  CAS  Google Scholar 

  25. Cakmakli B, Hazer B, Tekin IO, Kizgut S, Koksal M, Menceloglu Y (2004) Synthesis and characterization of polymeric linseed oil grafted methyl methacrylate or styrene. Macromol Biosci 4:649–655

    Article  CAS  Google Scholar 

  26. Keleş E, Hazer B (2008) Autooxidized polyunsaturated oils/oily acids: post-it applications and reactions with Fe(III) and adhesion properties. Macromol Symp 269:154–160

    Article  Google Scholar 

  27. Çakmakli B, Hazer B, Tekin İÖ, Cömert FB (2005) Synthesis and characterization of polymeric soybean oil-g-methyl methacrylate (and n-butyl methacrylate) graft copolymers: biocompatibility and bacterial adhesion. Biomacromolecules 6:1750–1758

    Article  Google Scholar 

  28. Vinu R, Marimuthu A, Giridhar M (2010) Enzymatic degradation of poly(soybean oil-g-methyl methacrylate). J Polym Eng 30:57–76

    Article  CAS  Google Scholar 

  29. Allı A, Hazer B (2008) Poly(N-isopropyl acrylamide) thermoresponsive cross-linked conjugates containing polymeric soybean oil and/or polypropylene glycol. Eur Poly J 44:1701–1713

    Article  Google Scholar 

  30. Hazer DB, Kilicay E, Hazer B (2012) Poly (3-hydroxyalkanoate)s: diversification and biomedical applications. A state of the art review. Mat Sci Eng C 32:637–647

    Article  CAS  Google Scholar 

  31. Hazer DB, Hazer B, Kaymaz F (2009) Synthesis of microbial elastomers based on soybean oily acids. Biocompatibility studies. Biomed Mater 4:035011

    Article  Google Scholar 

  32. Liu Z, Xu Y, Cao L, Bao C, Sun H, Wang L, Daib K, Zhu L (2012) Phosphoester cross-linked vegetable oil to construct a biodegradable and biocompatible elastomer. Soft Matter 8:5888–5895

    Article  CAS  Google Scholar 

  33. Wang Z, Zhang X, Wang R, Kang H, Qiao B, Ma J, Zhang L, Wang H (2012) Synthesis and characterization of novel soybean-oil-based elastomers with favorable processability and tunable properties. Macromolecules 45(22):9010–9019

    Article  CAS  Google Scholar 

  34. Miao S, Sun L, Wang P, Liu R, Su Z, Zhang S (2012) Soybean oil-based polyurethane networks as candidate biomaterials: synthesis and biocompatibility. Eur J Lipid Sci and Technol 114:1165–1174

    Article  CAS  Google Scholar 

  35. Wu B, Lenz RW, Hazer B (1999) Polymerization of methyl methacrylate and its copolymerization with caprolactone catalyzed by isobutyl alumoxane catalyst. Macromolecules 32:6856–6859

    Article  CAS  Google Scholar 

  36. Akman AC, Tığlı RS, Gümüşderelioğlu M, Nohutçu RM (2010) Bone morphogenetic protein-6-loaded chitosan scaffolds enhance the osteoblastic characteristics of MC3T3-E1 cells. Artif Organs 34(1):65–74

    Article  CAS  Google Scholar 

  37. Gümüşderelioğlu M, Karakeçili A, Demirtaş TT (2011) Osteogenic activities of MC3T3-E1 cells on heparin-immobilized poly(caprolactone) membranes. J Bioact Compat Pol 26(3):257–267

    Article  Google Scholar 

  38. Akman AC, Tığlı RS, Gümüşderelioğlu M, Nohutçu RM (2010) bFGF-loaded HA–chitosan: a promising scaffold for periodontal tissue engineering. J Biomed Mater Res A 92A(3):953–962

    CAS  Google Scholar 

  39. Hazer B (1995) Grafting on polybutadiene with macro or macromonomer initiators containing poly(ethylene glycol) units. Macromol Chem Phys 196:1945–1952

    Article  CAS  Google Scholar 

  40. Ajiro H, Akashi M (2010) Cell proliferation on stereoregular isotactic-poly(propylene oxide) as a bulk substrate. Biomacromolecules 11:2840–2844

    Article  CAS  Google Scholar 

  41. Lukyanova L, Franceschi-Messant S, Vicendo P, Pereza E, Rico-Lattes I, Weinkamer R (2010) Preparation and evaluation of microporous organogel scaffolds for cell viability and proliferation. Colloid Surf B 79:105–112

    Article  CAS  Google Scholar 

  42. Li J, Yun H, Gong Y, Zhao N, Zhang X (2006) Investigation of MC3T3-E1 cell behavior on the surface of GRGDS-coupled chitosan. Biomacromolecules 7:1112–1123

    Article  CAS  Google Scholar 

  43. Tığlı RS, Kazaroğlu NM, Maviş B, Gümüşderelioğlu M (2011) Cellular behavior on epidermal growth factor (EGF)-immobilized PCL/gelatin nanofibrous scaffolds. J Biomater Sci Polymer Ed 22:207–223

    Article  Google Scholar 

  44. Tığlı RS, Gümüşderelioğlu M (2009) Chondrogenesis on BMP-6 loaded chitosan scaffolds in stationary and dynamic cultures. Biotechnol Bioeng 104(3):601–610

    Article  Google Scholar 

  45. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S (1983) In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 96:191–198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Authors thank to TÜBİTAK (Grant No. 211T016) and Bülent Ecevit University (Grant# 2011-10-3-02) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Seda Tığlı Aydın or Baki Hazer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tığlı Aydın, R.S., Hazer, B., Acar, M. et al. Osteogenic activities of polymeric soybean oil-g-polystyrene membranes. Polym. Bull. 70, 2065–2082 (2013). https://doi.org/10.1007/s00289-013-0976-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0976-2

Keywords

Navigation