Polymer Bulletin

, Volume 70, Issue 9, pp 2569–2586 | Cite as

Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): effect of l-lactide dimer

  • F. Ravari
  • A. Mashak
  • M. Nekoomanesh
  • H. MobediEmail author
Original Paper


The effects of l-lactide dimer as additives on the crystallization behavior of poly(l-lactide) (PLLA) films were studied. Hence, neat PLLA films and PLLA containing l-lactide (5 % w/w) (PLLA/La) were prepared in dichloromethane at room temperature via solution casting. The non-isothermal cold crystallization of PLLA films were studied using differential scanning calorimetry at various heating rates including 2.5, 5, 7.5, 10 and 15 °C/min. However, the X C% was increased for PLLA/La films in comparison with neat PLLA films. The crystallization kinetics was then analyzed by the Avrami, Jeziorny, Ozawa and Mo kinetic models. It is found that all the kinetic models were established to describe the experimental data fairly well except the Ozawa model. The values of t 1/2, Z C and F(T) indicated that the crystallization rate increased with increase in heating rates for PLLA and PLLA/La films. However, l-lactide dimer incorporated in PLLA films accelerates the crystallization process of PLLA at the high heating rate. The nucleation constant (K g) and the surface free energy (σ e) based on Lauritzen–Hoffman theory indicated that these parameters for PLLA/La films is lower than neat PLLA.


Poly(l-lactide) Crystallization kinetics Non-isothermal cold crystallization Differential scanning calorimetry 


  1. 1.
    Liu Y, Wang L, He Y, Fana Zh, Lia S (2010) Non-isothermal crystallization kinetics of poly(l-lactide). Polym Int 59:1616–1621CrossRefGoogle Scholar
  2. 2.
    Acar I, Durmus A, Ozgümüs S (2007) Non-isothermal crystallization kinetics and morphology of polyethylene terephthalate modified with polydactic acid. J Appl Polym Sci 106:4180–4191CrossRefGoogle Scholar
  3. 3.
    Tsuji H, Miyauchi S (2001) Enzymatic hydrolysis of poly(Lactide)s: effects of molecular weight, l-Lactide content, and enantiomeric and diastereoisomeric polymer blending. Biomacromolecules 2:597–604CrossRefGoogle Scholar
  4. 4.
    Li SM, Tenon M, Garreau H, Braud C, Vert M (2000) Enzymatic degradation of stereocopolymers derived from l-dl- and meso-lactides. Polym Degrad Stabil 67:85–90CrossRefGoogle Scholar
  5. 5.
    Wang Y, Funari S, Mano J (2006) Influence of semicrystalline morphology on the glass transition of poly(l-lactic acid). Macromol Chem Phys 207:1262–1271CrossRefGoogle Scholar
  6. 6.
    Zhi-Hua Zh, Jian-Ming R, Zhong-Cheng Zh, Jian-Peng Z (2007) The kinetics of melting crystallization of poly-l-lactide. Polym Plast Tech Eng 46:863–871CrossRefGoogle Scholar
  7. 7.
    Kolstad J (1996) Crystallization kinetics of poly(l-lactide-co-meso-lactide). J Appl Polym Sci 62:1079–1091CrossRefGoogle Scholar
  8. 8.
    Zhou WY, Duan B, Wang M, Cheung WL (2009) Crystallization kinetics of poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Appl Polym Sci 113:4100–4115CrossRefGoogle Scholar
  9. 9.
    Xu H-Sh, Dai XJ, Lamb PR, Li Zh-M (2009) Poly(l-lactide) crystallization induced by multiwall carbon nanotubes at very low loading. J Polym Sci Part B Polym Phys 47:2341–2352CrossRefGoogle Scholar
  10. 10.
    Katiyar V, Nanavati H (2011) High molecular weight poly(l-lactic acid) clay nanocomposites via solid-state polymerization. Polym Compos 32:497–509CrossRefGoogle Scholar
  11. 11.
    Lu J, Qiu Z, Yang W (2007) Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties. Polymer 48:4196–4204CrossRefGoogle Scholar
  12. 12.
    Tsuji H, Sawada M, Bouapao L (2009) Biodegradable polyesters as crystallization-accelerating agents of poly(l-lactide). ACS Appl Mater Interfaces 1:1719–1730CrossRefGoogle Scholar
  13. 13.
    Ohtani Y, Okumura K, Kawaguchi A (2003) Crystallization behavior of amorphous poly(l-lactide). J Macromol Sci Phys 42:875–888CrossRefGoogle Scholar
  14. 14.
    Schmidt SC, Hillmyer MA (2001) Polylactide stereocomplex crystallites as nucleating agents for isotactic polylactide. J Polym Sci Part B Polym Phys 39:300–313CrossRefGoogle Scholar
  15. 15.
    Baratian S, Hall ES, Lin JS, Xu R, Runt J (2001) Crystallization and solid-state structure of random polylactide copolymers: poly(l-lactide-co-l-lactide)s. Macromolecules 34:4857–4864CrossRefGoogle Scholar
  16. 16.
    Wei JC, Sun JR, Wang HJ, Chen XS, Jing XB (2010) Isothermal crystallization behavior and unique banded spherulites of hydroxyapatite/poly(l-lactide) nanocomposites. Chin J Polym Sci (CJPS) 4:499–507CrossRefGoogle Scholar
  17. 17.
    Pluta M, Jeszka JK, Boiteux G (2007) Polylactide/montmorillonite nanocomposites: structure, dielectric, viscoelastic and thermal properties. Eur Polym J 43:2819–2835CrossRefGoogle Scholar
  18. 18.
    Cao D, Wu L (2009) Poly(l-lactic acid)/silicon dioxide nanocomposite prepared via the in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: isothermal crystallization and melting behaviors. J Appl Polym Sci 111:1045–1050CrossRefGoogle Scholar
  19. 19.
    Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609CrossRefGoogle Scholar
  20. 20.
    Nam JY, Okamoto M, Okamoto H, Nakano M, Usuki A, Matsuda M (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47:1340–1347CrossRefGoogle Scholar
  21. 21.
    Hu X, An H, Li ZhM, Geng Y, Li L, Yang Ch (2009) Origin of carbon nanotubes induced poly(l-lactide) crystallization: surface induced conformational order. Macromolecules 42:3215–3218CrossRefGoogle Scholar
  22. 22.
    Li Y, Wang Y, Liu L, Han L, Xiang F, Zhou Z (2009) Crystallization improvement of poly(l-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B Polym Phys 47:326–339CrossRefGoogle Scholar
  23. 23.
    Zhao Y, Qiu Zh, Yan Sh, Yang W (2011) Crystallization behavior of biodegradable poly(l-lactide)/multiwalled carbon nanotubes nanocomposites from the amorphous state. Polym Eng Sci 51:1564–1573CrossRefGoogle Scholar
  24. 24.
    Mobedi H, Mashak A, Nekoomanesh M, Orafai H (2011) L-lactide additive and in vitro degradation performance of poly(l-lactide) films. Iran Polym J 20:237–245Google Scholar
  25. 25.
    Mashak A, Mobedi H, Nekoomanesh M, Ravari F (2011) Crystallization behavior of poly(l-lactide) films in presence of Mg(OH)2 and l-lactide. Iran J Polym Sci Technol (Persian Edition) 23(5):405–413Google Scholar
  26. 26.
    Zilberman M, Schwade ND, Eberhart RC (2004) Protein-loaded bioresorbable fibers and expandable stents: mechanical properties and protein release. J Biomed Mater Res Part B Appl Biomater 69B:1–10CrossRefGoogle Scholar
  27. 27.
    Saengsuwan S, Tongkasee P, Sudyoadsuk T, Promarak V, Keawin T, Jungsuttiwong S (2011) Non-isothermal crystallization kinetics and thermal stability of the in situ reinforcing composite films based on thermotropic liquid crystalline polymer and polypropylene. J Therm Anal Calorim 103:1017–1026CrossRefGoogle Scholar
  28. 28.
    Wu D, Wu L, Xu B, Zhang Y, Zhang M (2007) Non-isothermal cold crystallization behavior and kinetics of polylactide/clay nanocomposites. J Polym Sci Part B Polym Phys 45:1100–1113CrossRefGoogle Scholar
  29. 29.
    Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7:1103–1112CrossRefGoogle Scholar
  30. 30.
    Liao R, Yang B, Yu W, Zhou Ch (2007) Isothermal cold crystallization kinetics of polylactide/nucleating agents. J Appl Polym Sci 104:310–317CrossRefGoogle Scholar
  31. 31.
    Jeziorny A (1978) Parameters characterizing the kinetics of the kinetics of the non-isothermal crystallization of poly(ethylene terephthalate) determined by D.S.C. Polymer 19:1142–1144CrossRefGoogle Scholar
  32. 32.
    Ozawa T (1971) Kinetics of non- isothermal crystallization. Polymer 12:150–158CrossRefGoogle Scholar
  33. 33.
    Liu T, Mo Zh, Wang Sh, Zhang H (1997) Non-isothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci 37:568–575CrossRefGoogle Scholar
  34. 34.
    Qiu Zh, Mo Zh, Yu Y, Zhang H, Sheng Sh, Song C (2000) Non-isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone). J Appl Polym Sci 77:2865–2871CrossRefGoogle Scholar
  35. 35.
    Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand 57:217–221CrossRefGoogle Scholar
  36. 36.
    Zhou WY, Duan B, Wang M, Cheung WL (2011) Isothermal and nonisothermal crystallization kinetics of poly(l-Lactide)/carbonated hydroxyapatite nanocomposite microspheres. In: Boreddy Reddy (ed) Advances in diverse industrial applications of nanocomposites. ISBN: 978-953-307-202-9, In Tech. Accessed 8 Jan 2012

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. Ravari
    • 1
  • A. Mashak
    • 2
  • M. Nekoomanesh
    • 2
  • H. Mobedi
    • 2
    Email author
  1. 1.Department of ChemistryPayame Noor UniversityTehranIran
  2. 2.Iran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations