Skip to main content
Log in

Physicochemical studies of crosslinked thiolated polyvinyl alcohol hydrogels

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

This study is related to the post-crosslinking of thiolated polyvinyl alcohol (TPVA) hydrogels using three crosslinkers, sodium trimetaphosphate (STMP), boric acid (BA) and glyoxal (GLY) under alkaline conditions. The crosslinking reaction was carried out under different conditions: crosslinker nature, crosslinker content and crosslinking time. The influence of different crosslinkers on the physicochemical and structural characteristics of TPVA was evaluated. The three reagents used for crosslinking presented different action mode on hydrogels. The optimized crosslinking conditions were the crosslinker content is 0.1 % (w/v) at crosslinking time of 30 min. The results showed that the STMP-crosslinked TPVA had the maximum thiol content and swelling ability. All crosslinked TPVA samples were stable in different pH media. The involvement of thiol and other relevant groups after crosslinking in the different crosslinked TPVA samples was confirmed by attenuated total reflectance-infrared spectra. The microanalysis of elements present in the crosslinked samples were analyzed by energy-dispersive X-ray microanalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Katia CS, Figueiredo LM, Alves C, Borges P (2009) Poly(vinyl alcohol) films crosslinked by glutaraldehyde under mild conditions. J Appl Polym Sci 111:3074–3080. doi:10.1002/app.29263

    Article  Google Scholar 

  2. Xiao S, Huang RYM, Feng X (2006) Preparation and properties of trimesoyl chloride crosslinked poly(vinyl alcohol) membranes for pervaporation dehydration of isopropanol. J Membr Sci 286:245–254. doi:10.1016/j.memsci.2006.09.042

    Article  CAS  Google Scholar 

  3. Gohil JM, Bhattacharya A, Ray P (2006) Studies on the crosslinking of polyvinyl alcohol. J Polym Res 13:161–169. doi:10.1007/s10965-005-9023-9

    Article  CAS  Google Scholar 

  4. Peter S, Hese N, Stefan R (1976) Phenol-selective, highly resistant RO membranes made from PVA for the purification of toxic industrial wastes. Desalination 19:161–167. doi:10.1016/S0011-9164(00)88026-1

    Article  CAS  Google Scholar 

  5. Niğmet U, Agnieszka J, Agnieszka M, Grażyna ZT, Corneliu C (2011) Optimization of Co2+ ions removal from water solutions via polymer enhanced ultrafiltration with application of PVA and sulfonated PVA as complexing agents. J Coll Interf Sci 362:615–624. doi:10.1016/j.jcis.2011.06.072

    Article  Google Scholar 

  6. Li X, Li Y, Zhang S, Ye Z (2012) Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution. Chem Eng J 183:88–97. doi:10.1016/j.cej.2011.12.025

    Article  CAS  Google Scholar 

  7. Çifci C, Kaya A (2010) Preparation of poly(vinyl alcohol)/cellulose composite membranes for metal removal from aqueous solutions. Desalination 253:175–179. doi:10.1016/j.desal.2009.11.010

    Article  Google Scholar 

  8. Susan R, Sandeman VM, Guʼnko OM, Bakalinska CA, Howel Y, Zheng MT, Kartel GJ (2011) Adsorption of anionic and cationic dyes by activated carbons, PVA hydrogels, and PVA/AC composite. J Coll Interf Sci 358:582–592. doi:10.1016/j.jcis.2011.02.031

    Article  Google Scholar 

  9. Ying S, Yuelian P (2008) UF membrane of PVA modified with TDI. Desalination 221:324–330. doi:10.1016/j.desal.2007.01.090

    Article  Google Scholar 

  10. Elena VB, Anis A, Sri B, Alvarez ZE, Sammy LI, Chana V, Basiuk A (2009) Poly(vinyl alcohol)/CNT composites: an effect of crosslinking with glutaraldehyde. Superlatt Microstr 46:379–383. doi:10.1016/j.spmi.2008.10.007

    Article  Google Scholar 

  11. Priscila MA, Rosemary AC, Izabel CFM, Carla GL, Ana-Mônica QB, Paulo JAS (2011) Development of films based on blends of gelatin and poly(vinyl alcohol), crosslinked with glutaraldehyde. Food Hydrocoll 25:1751–1757. doi:10.1016/j.foodhyd.2011.03.018

    Article  Google Scholar 

  12. Takei T, Ikeda K, Ijima H, Kawakami K (2011) Fabrication of poly(vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization. Proc Biochem 46:566–571. doi:10.1016/j.procbio.2010.10.011

    Article  CAS  Google Scholar 

  13. Atta MA, Nermine EM, Arndt KF (2006) Swelling characteristics of pH and thermo-sensitive crosslinked polyvinyl alcohol grafts. J Polym Res 13:53–63. doi:10.1007/s10965-005-9004-z

    Article  CAS  Google Scholar 

  14. Rathna GVN (2008) Gelatin hydrogels: enhanced biocompatibility, drug release and cell viability. J Mater Sci Mater Med 19:2351–2358. doi:10.1007/s10856-007-3334-9

    Article  CAS  Google Scholar 

  15. Dulong V, Lack S, Cerf DL, Picton L, Vannier JP, Muller G (2004) Hyaluronan-based hydrogels particles prepared by crosslinking with trisodium trimetaphosphate. Synthesis and characterization. Carbohydr Polym 57:1–6. doi:10.1016/j.carbpol.2003.12.006

    Article  CAS  Google Scholar 

  16. Chaouat M, Catherine LV, Wilms EB, Brigitte E, Frédéric C, Mircea AM, Didier LA (2008) Novel crosslinked polyvinyl alcohol (PVA) for vascular grafts. Adv Funct Mater 18:2855–2861. doi:10.1002/adfm.200701261

    Article  CAS  Google Scholar 

  17. Liang S, Liu L, Huang Q, Yam KL (2009) Preparation of single or double-network chitosan/poly(vinyl alcohol) gel films through selectively crosslinking method. Carbohydr Polym 77:718–724. doi:10.1016/j.carbpol.2009.02.007

    Article  CAS  Google Scholar 

  18. Miyazaki T, Yuuki T, Sachiko A, Takahiko I, Akie H, Keiko E (2010) Role of boric acid for a poly(vinyl alcohol) film as a crosslinking agent: melting behaviors of the films with boric acid. Polymer 51:5539–5549. doi:10.1016/j.polymer.2010.09.048

    Article  CAS  Google Scholar 

  19. Shin EJ, Won SL, Yang HL (2012) Effect of boric acid treatment method on the characteristics of poly(vinyl alcohol)/Iodine polarizing film. J Appl Polym Sci 123:672–681. doi:10.1002/app.3449

    Article  CAS  Google Scholar 

  20. Naozumi T, Masahiko S, Johta K, Mitsuhiro S, Ryutoku Y (2001) Morphology and mechanical properties of pullulan/poly(vinyl alcohol) blends crosslinked with glyoxal. J Appl Polym Sci 82:2273–2280. doi:10.1002/app.2075

    Article  Google Scholar 

  21. Zhang Y, Peter CZ, David E (2010) Crosslinking reaction of poly(vinyl alcohol) with glyoxal. J Polym Res 17:725–730. doi:10.1007/s10965-009-9362-z

    Article  CAS  Google Scholar 

  22. Blanes M, Gisbert MJ, Marco B, Bonet M, Gisbert J, Balart R (2010) Influence of glyoxal in the physical characterization of PVA nanofibers. Text Res J 80:1465–1472. doi:10.1177/0040517509357654

    Article  CAS  Google Scholar 

  23. Gupta B, Anjum S, Ikram S (2012) Preparation of thiolated polyvinyl alcohol hydrogels. J Appl Polym Sci 129:815–821. doi:10.1002/APP.38856

    Google Scholar 

  24. Shengju W, Fengting L, Hongtao W, Lin F, Bingru Z, Guangtao L (2010) Effects of poly(vinyl alcohol) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 51:6203–6211. doi:10.1016/j.polymer.2010.10.015

    Article  Google Scholar 

  25. Rebecca MD, Peng Y, Gobinda S, Eleanor W, Alexandru DA, Richard SP (2006) Wheat gluten-thiolated poly(vinyl alcohol) blends with improved mechanical properties. Biomacromolecules 7:2837–2844. doi:10.1021/bm060432n

    Article  Google Scholar 

  26. Dominguez L, Yue Z, Economy J, Mangun CL (2002) Design of polyvinyl alcohol mercaptyl fibers for arsenite chelation. React Funct Polym 53:205–215. doi:10.1016/S1381-5148(02)00174-8

    Article  CAS  Google Scholar 

  27. Lloyd DD (2000) Anal Chem Res. http://delloyd.50megs.com/moreinfo/buffers2.html

  28. Ahmad SI, Hasan N, Zainul Abid CKV, Mazumdar N (2008) Preparation and characterization of films based on crosslinked blends of gum acacia, polyvinylalcohol, and polyvinyl pyrrolidone-iodine complex. J Appl Polym Sci 109:775–781. doi:10.1002/app.28140

    Article  CAS  Google Scholar 

  29. Rodriguez E, Katime I (2003) Behavior of acrylic acid-itaconic acid hydrogels in swelling, shrinking and uptakes of some metal ions from aqueous solution. J Appl Polym Sci 90:530–536. doi:10.1002/app.12725

    Article  CAS  Google Scholar 

  30. Jose R, Cesteros LC, Katime I (1994) Hydrogen bonding and sequence distribution in poly(vinyl acetate-co-vinyl alcohol) copolymers. Macromolecule 27:2200–2205. doi:10.1021/ma00086a033

    Article  Google Scholar 

  31. Bellamy LJ (1980) The infrared spectra of complex molecules, 2nd edn. Chapman and Hall, London

    Book  Google Scholar 

  32. Okumura H, Kitazawa N, Wada S, Hotta H (2011) Stability of sucrose fatty acid esters under acidic and basic conditions. J Oleo Sci 60:313–320. doi:10.5650/jos.60.313

    Article  CAS  Google Scholar 

  33. Gupta B, Anjum S, Ikram S (2013) Preparation of crosslinked thiolated poly(vinyl alcohol) hydrogels for arsenic removal from water. Polym Bull (communicated)

Download references

Acknowledgments

The authors would like to express their appreciations to Ms. Deepti Gautam for helping their attempts in making the initial draft of this article. Sadiya Anjum sincerely thanks University Grant Commission for the award of a BSR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhuvanesh Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, B., Anjum, S. & Ikram, S. Physicochemical studies of crosslinked thiolated polyvinyl alcohol hydrogels. Polym. Bull. 70, 2437–2450 (2013). https://doi.org/10.1007/s00289-013-0965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0965-5

Keywords

Navigation