Skip to main content
Log in

Electrical and rheological properties of MWCNT/polycarbonate nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The electrical and rheological percolation behaviors of polycarbonate/multiwall carbon nanotube nanocomposites were investigated. To determine the effects of surface functionalization on a carbon nanotube surface, poly(styrene-co-acrylonitrile) (SAN)-grafted multiwall carbon nanotubes were prepared using surface-initiated atom transfer radical polymerization. The amount of grafted SAN was controlled by changing the polymerization time and was characterized using TGA. FT-IR and TEM were used to characterize the surface of the functionalized carbon nanotubes. The rheological and electrical percolation behaviors of the SAN-grafted multiwall carbon nanotube/polycarbonate nanocomposites were compared to those of pristine multiwall carbon nanotubes, where the effects were shown to increase with increasing SAN content. The results are attributed to the compatibility of SAN with polycarbonates, which induced uniform dispersion of the functionalized carbon nanotubes. Uniform dispersion was also confirmed by evaluating a tensile-fractured nanocomposite specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99:1787–1800

    Article  CAS  Google Scholar 

  3. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon 33:925–930

    Article  CAS  Google Scholar 

  4. Mintmire JW, White CT (1995) Electronic and structural properties of carbon nanotubes. Carbon 33:893–902

    Article  CAS  Google Scholar 

  5. Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotune composite. Science 265:1212

    Article  CAS  Google Scholar 

  6. McEuen PL, Bockrath M, Cobden DH, Yoon YG, Louie SG (1999) Disorder, pseudospins, and backscattering in carbon nanotubes. Phys Rev Lett 83:5098–5101

    Article  CAS  Google Scholar 

  7. Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  CAS  Google Scholar 

  8. Bhattacharyya S, Kymakis E, Amaratunga GA (2004) Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. J Chem Mater 16:4819–4823

    Article  CAS  Google Scholar 

  9. Han JH, Lee SH, Berdinsky AS, Kim YW, Yoo JB, Park CY (2005) Effects of various post-treatments on carbon nanotube films for reliable field emission. Diamond Related Mater 14:1891–1896

    Article  CAS  Google Scholar 

  10. Sabba Y, Thomas EL (2004) Macromolecules high-concentration dispersion of single-wall carbon nanotubes. Macromolecules 37:4815–4820

    Article  CAS  Google Scholar 

  11. Kota AK, Cipriano BH, Duesterberg MK, Gershon AL, Powell D, Bruck HA (2007) Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40:7400–7406

    Article  CAS  Google Scholar 

  12. Qin Y, Liu L, Shi J, Wu W, Zhang J, Guo ZX (2003) Large-scale preparation of solubilized carbon nanotubes. Chem Mater 15:3256–3260

    Article  CAS  Google Scholar 

  13. Velasco-Santos C, Martinez-Hernandez AL, Fisher FT, Ruoff R, Castano VM (2003) Improvement of thermal and mechanical properties of carbon nanotube composites through chemical functionalization. Chem Mater 15:4470–4475

    Article  CAS  Google Scholar 

  14. Hwang GL, Shieh YT, Hwang KC (2004) Efficient load transfer to polymer-grafted multiwalled carbon nanotubes in polymer composites. Adv Funct Mater 14:487–491

    Article  CAS  Google Scholar 

  15. Wang M, Pramoda KP, Goh OH (2005) Enhancement of the mechanical properties of poly(styrene-co-acrylonitrile) with poly(methyl methacrylate)-grafted multiwalled carbon nanotubes. Polymer 46:11510–11516

    Article  CAS  Google Scholar 

  16. Bhattacharyya AR, Pötschke P, Abdel-Goad M, Fischer D (2004) Effect of encapsulated SWNT on the mechanical properties of melt mixed PA12/SWNT composites. Chem Phys Lett 392:28–33

    Article  CAS  Google Scholar 

  17. Giraldo LF, Lopez BL, Brostow W (2009) Effect of the type of carbon nanotubes on tribological properties of polyamide 6. Polym Eng Sci 49:896–902

    Article  CAS  Google Scholar 

  18. Bose S, Bhattacharyya AR, Kulkarni AR, Pötschke P (2009) Electrical, rheological and morphological studies in co-continuous blends of polyamide 6 and acrylonitrile–butadiene–styrene with multiwall carbon nanotubes prepared by melt blending. Comp Sci Technol 69:365–372

    Article  CAS  Google Scholar 

  19. Kodgire PV, Bhattacharyya AR, Bose S, Gupta N, Kulkarni AR, Misra A (2006) Control of multiwall carbon nanotubes dispersion in polyamide6 matrix: an assessment through electrical conductivity. Chem Phys Lett 432:480–485

    Article  CAS  Google Scholar 

  20. Lee WH, Cho ENR, Jeon SH, Youn JR (2007) Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45:2810–2822

    Article  CAS  Google Scholar 

  21. Zhang W, Suhr J, Koratkar N (2006) Carbon nanotube/polycarbonate composites as multifunctional strain sensors. J Nanosci Nanotechnol 6:960–965

    Article  CAS  Google Scholar 

  22. Scardaci V, Sun Z, Wang F, Rozhin AG, Hasan T, Ferrari AC (2008) Carbon nanotube polycarbonate composites for ultrafast lasers. Adv Mater 20:4040–4043

    Article  CAS  Google Scholar 

  23. Pegel S, Pötschke P, Petzold G, Alig I, Dudkin SM, Lellinger D (2008) Dispersion, agglomeration, and network formation of multiwalled carbon nanotubes in polycarbonate melts. Polymer 49:974–984

    Article  CAS  Google Scholar 

  24. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Comp Sci Technol 66:1162–1173

    Article  CAS  Google Scholar 

  25. Pötschke P, Bhattacharyya AR, Janke A (2004) Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. Eur Polym J 40:137–148

    Article  Google Scholar 

  26. Pötschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870

    Article  Google Scholar 

  27. Pötschke P, Fornes TD, Paul DR (2002) Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer 43:3247–3255

    Article  Google Scholar 

  28. Sung YT, Kum CT, Lee HS, Byon HS, Yoon HG, Kim WN (2005) Dynamic mechanical and morphological properties of polycarbonate/multi-walled carbon nanotube composites. Polymer 46:5656–5661

    Article  CAS  Google Scholar 

  29. Shanmugharaj AM, Bae JH, Nayak RR, Ryu SH (2007) Preparation of Poly(styrene-co-acrylonitrile) grafted multiwalled carbon nanotubes via surface initiated atom transfer radical polymerization. J Polym Sci Part A: Polym Chem 45:460–470

    Article  CAS  Google Scholar 

  30. Nayak RR, Lee KY, Shanmugharaj AM, Ryu SH (2007) Synthesis and characterization of styrene grafted carbon nanotube and its polystyrene nanocomposite. Eur Polym J 43:4916–4923

    Article  CAS  Google Scholar 

  31. Choi WS, Ryu SH (2010) Enhancement of dispersion of carbon nanotube and physical properties of Poly(styrene-co-acrylonitrile)/multiwalled carbon nanotube nanocomposite via surface initiated ATRP. J Appl Polym Sci 116:2930–2936

    CAS  Google Scholar 

  32. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Comp Sci Technol 69:1486–1498

    Article  CAS  Google Scholar 

  33. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  CAS  Google Scholar 

  34. McClory C, McNally T, Baxendale M, Pötschke P, Blau W, Ruether M (2010) Electrical and rheological percolation of PMMA/MWCNT nanocomposites as function of CNT geometry and functionality. Eur Polym J 46:854–868

    Article  CAS  Google Scholar 

  35. Mitchell AC, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35:8825–8830

    Article  CAS  Google Scholar 

  36. Hu G, Zhao C, Zhang S, Yang M, Wang Z (2006) Low percolation thresholds of electrical conductivity and rheology in Poly(ethylene terephthalate) through the networks of multi-walled carbon nanotubes. Polymer 47:480–488

    Article  CAS  Google Scholar 

  37. Hanafy GM, Mdbouly SA, Ougizawa T, Inoue T (2004) Effects of AN-contents and shear flow on the miscibility of PC/SAN blends. Polymer 45:6879–6887

    Article  CAS  Google Scholar 

  38. Zhang Q, Rastogi S, Chen D, Lippits D, Lemstra P-J (2006) Low percolation threshold in single-walled carbon nanotube/high density polyethylene composites prepared by melt processing technique. Carbon 44:778–785

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Kyung Hee University (KH 20090540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hun Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, W.S., Ryu, S.H. Electrical and rheological properties of MWCNT/polycarbonate nanocomposites. Polym. Bull. 70, 1709–1721 (2013). https://doi.org/10.1007/s00289-013-0955-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0955-7

Keywords

Navigation