Skip to main content

Advertisement

Log in

Synthesis and drug-release properties of biodegradable hydrogels having β-cyclodextrin

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A new β-cyclodextrin (β-CD) methacrylated monomer was synthesized from the reaction of β-CD, glycidyl methacrylate. Based on inclusion character of β-CD, a series of hydrogels were prepared by irradiating the mixtures of β-CD methacrylate monomer (β-CD-Met), poly(ethylene glycol) monoacrylate, poly(ethylene glycol)diacrylate, fumaric acid monoethyl ester-functionalized poly(lactic-co-glycolic) acid, 1-vinyl-2-pyrrolidone, N,N′-methylene bisacrylamide, and the photoinitiator. Gel percentages and equilibrium swelling ratios (%) of hydrogels were investigated. It was observed that equilibrium-swelling ratio increased with increasing β-CD-Met content in the hydrogel composition. SEM images demonstrated that β-CD-Met-based hydrogel have lots of voids on the fractured surface. In this study, ibuprofen (IBU) which is capable of forming inclusion complex with β-CD was chosen. For the hydrogel with maximum CD content, the IBU drug loading was found as 9 mg/g dry gel. It can be concluded that the inclusion complex-formation capability of β-CD moiety increases the drug release by improving the aqueous solubility of hydrophilic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Harada A, Adachi H, Kawaguchi Y, Kamachi M (1997) Recognition of alkyl groups on a polymer chain by cyclodextrins. Macromolecules 30:5181–5182

    Article  CAS  Google Scholar 

  2. Harada A, Kamachi M (1990) Complex formation between poly(ethylene glycol) and α-cyclodextrin. Macromolecules 23:2821–2823

    Article  CAS  Google Scholar 

  3. Liu Y, Fan XD, Hu H, Tang ZH (2004) Release of chlorambucil from poly(N-isopropylacrylamide) hydrogels with β-cyclodextrin moieties. Macromol Biosci 4:729–736

    Article  CAS  Google Scholar 

  4. Van de Manakker F, Vermonden T, van Nostrum CF, Hennink WE (2009) Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules 10(12):3157–3175

    Article  Google Scholar 

  5. Sajeesh S, Bouchemal K, Marsaud V, Vauthier C, Sharma CP (2010) Cyclodextrin complexed insulin encapsulated hydrogel microparticles: an oral delivery system for insulin. J Control Release 147:377–384

    Article  CAS  Google Scholar 

  6. Zhang QF, Jiang ZT, Guo YX, Li R (2008) Complexation study of brilliant cresyl blue with β-cyclodextrin and its derivatives by UV–vis and fluorospectrometry. Spectrochim Acta A 69:65–70

    Article  Google Scholar 

  7. Yu JS, Wei FD, Gao W, Zhao CC (2002) Thermodynamic study on the effects of β-cyclodextrin inclusion with berberine. Spectrochim Acta A 58:249–256

    Article  Google Scholar 

  8. Shehatta I (1996) Thermodynamics of macrocyclic compounds I. Inclusion complexes of α and β-cyclodextrins with some non-electrolytes in water. React Funct Polym 28:183–190

    Article  CAS  Google Scholar 

  9. Landy D, Fourmentin S, Salome M, Surpateanu G (2000) Analytical improvement in measuring formation constants of inclusion complexes between β-cyclodextrin and phenolic compounds. J Incl Phenom Macrocycl Chem 38:187–198

    Article  CAS  Google Scholar 

  10. Bernhardt S, Glöckner P, Ritter H (2001) Cyclodextrins in polymer synthesis: influence of methylated β-cyclodextrin as host on the free radical copolymerization reactivity ratios of hydrophobic acrylates as guest monomers in aqueous medium. Polym Bull 46:153–157

    Article  CAS  Google Scholar 

  11. Zhang GM, Shuang SM, Dong ZM, Dong C, Pan JH (2002) Investigation in the inclusion behavior of neutral red with β-cyclodextrin, hydroxypropyl-β-cyclodextrin and sulfobutylether-β-cyclodextrin. Anal Chim Acta 474:189–195

    Article  CAS  Google Scholar 

  12. Del Valle EMM (2004) Cyclodextrins and their uses: a review. Process Biochem 39:1033–1046

    Article  Google Scholar 

  13. Szejtli J, Szente L (2005) Elimination of bitter, disgusting tastes of drugs and foods by cyclodextrins. Eur J Pharm Biopharm 61:115–125

    Article  CAS  Google Scholar 

  14. Mosinger J, Tomankova V, Nemcova I, Zyka J (2001) Cyclodextrins in analytical chemistry. Anal Lett 34:1979–2004

    Article  CAS  Google Scholar 

  15. Demir S, Kahraman MV, Bora N, Kayaman-Apohan N, Ogan A (2008) Preparation, characterization, and drug release properties of poly(2-hydroxyethyl methacrylate) hydrogels having β-cyclodextrin functionality. J Appl Polym Sci 109:1360–1368

    Article  CAS  Google Scholar 

  16. Pinto LMA, Fraceto LF, Santana MHA, Pertinhez TA, Junior SO, de Paula E (2005) Physico-chemical characterization of benzocaine–β-cyclodextrin inclusion complexes. J Pharm Biomed Anal 39:956–963

    Article  CAS  Google Scholar 

  17. Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ (2007) Estradiol sustained release from high affinity cyclodextrin hydrogels. Eur J Pharm Biopharm 66:55–62

    Article  CAS  Google Scholar 

  18. Cesteros LC, Ramírez CA, Peciña A, Katime I (2006) Poly(ethylene glycol-β-cyclodextrin) gels: synthesis and properties. J Appl Polym Sci 102:1162–1166

    Article  CAS  Google Scholar 

  19. Cesteros LC, Ramírez CA, Peciña A, Katime I (2007) Synthesis and properties of hydrophilic networks based in poly(ethylene glycol) and β-cyclodextrin. Macromol Chem Phys 208:1764–1772

    Article  CAS  Google Scholar 

  20. Cesteros LC, González-Teresa R, Katime I (2009) Hydrogels of β-cyclodextrin crosslinked by acylated poly(ethylene glycol): synthesis and properties. Eur Polym J 45:674–679

    Article  CAS  Google Scholar 

  21. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329

    Article  CAS  Google Scholar 

  22. Tasdelen B, Kayaman-Apohan N, Güven O, Baysal BM (2004) Preparation of poly(N-isopropylacrylamide/itaconic acid) copolymeric hydrogels and their drug release behavior. Int J Pharm 278:343–351

    Article  CAS  Google Scholar 

  23. Akdemir ZS, Kayaman-Apohan N (2007) Investigation of swelling, drug release and diffusion behaviors of poly(N-isopropylacrylamide)/poly(N-vinylpyrrolidone) full-IPN hydrogels. Polym Adv Technol 18:932–939

    Article  CAS  Google Scholar 

  24. Lu D, Yang L, Zhou T, Lei Z (2008) Synthesis, characterization and properties of biodegradable polylactic acid-β-cyclodextrin cross-linked copolymer microgels. Eur Polym J 44:2140–2145

    Article  CAS  Google Scholar 

  25. Gong C, Shi S, Dong P, Kan B, Gou M, Wang X, Li X, Luo F, Zhao X, Wei Y, Qian Z (2009) Synthesis and characterization of PEG–PCL–PEG thermosensitive hydrogel. Int J Pharm 365:89–99

    Article  CAS  Google Scholar 

  26. Li J, Li X, Ni X, Wang X, Li H, Leong KW (2006) Self-assembled supramolecular hydrogels formed by biodegradable PEO–PHB–PEO triblock copolymers and α-cyclodextrin for controlled drug delivery. Biomaterials 27:4132–4140

    Article  CAS  Google Scholar 

  27. Kayaman-Apohan N, Baysal BM (2001) Semi-interpenetrating hydrogel networks of poly(2-hydroxyethyl methacrylate) with poly[(d,l-lactic acid)-co-(e-caprolactam)]. Macromol Chem Phys 202:1182–1188

    Article  CAS  Google Scholar 

  28. Censi R, van Putten S, Vermonden T, di Martino P, van Nostrum CF, Harmsen MC, Bank RA, Hennink WE (2011) The tissue response to photopolymerized PEG-p(HPMAm-lactate)-based hydrogels. J Biomed Mater Res A 97(3):219–229

    Google Scholar 

  29. Adams SS, Buckler JW (1983) Ibuprofen and flubiprofen. In: Huskisson EC (ed) Anti-rheumatic drugs. Praeger, West Port, pp 244–266

    Google Scholar 

  30. Leo E, Forni F, Bernabei MT (2000) Surface drug removal from ibuprofen-loaded PLA microspheres. Int J Pharm 196:1–9

    Article  CAS  Google Scholar 

  31. Namur J, Wassef M, Pelage JP, Lewis A, Manfait M, Laurent A (2009) Infrared microspectroscopy analysis of ibuprofen release from drug eluting beads in uterine tissue. J Control Release 135:198–202

    Article  CAS  Google Scholar 

  32. Bidonea J, Melo APP, Bazzo GC, Carmignan F, Soldi MS, Pires ATN, Lemos-Senna E (2009) Preparation and characterization of ibuprofen-loaded microspheres consisting of poly(3-hydroxybutyrate) and methoxy poly(ethylene glycol)-b-poly(D,L-lactide) blends or poly(3-hydroxybutyrate) and gelatin composites for controlled drug release. Mater Sci Eng C 29:588–593

    Article  Google Scholar 

  33. Akdemir ZS, Kayaman-Apohan N, Kahraman MV, Erdem Kuruca S, Güngör A, Karadenizli S (2011) Preparation of biocompatible, UV-cured fumarated poly(ether-ester)-based tissue-engineering hydrogels. J Biomater Sci 22:857–872

    Article  CAS  Google Scholar 

  34. Higuchi T, Connors KA (1965) Phase solubility techniques. Adv Anal Chem Instrum 4:117–122

    CAS  Google Scholar 

  35. Liu YY, Fan XD (2002) Synthesis and characterization of pH- and temperature-sensitive hydrogel of N-isopropylacrylamide/cyclodextrin based copolymer. Polymer 43:4997–5003

    Article  CAS  Google Scholar 

  36. Liu L, Zhu S (2006) Preparation and characterization of inclusion complexes of prazosin hydrochloride with cyclodextrin and hydroxypropyl-cyclodextrin. J Pharm Biomed Anal 40:122–127

    Article  CAS  Google Scholar 

  37. Godwin DA, Wiley CJ, Felton LA (2006) Using cyclodextrin complexation to enhance secondary photoprotection of topically applied ibuprofen. Eur J Pharm Biopham 62:85–93

    Article  CAS  Google Scholar 

  38. Realdon N, Ragazzi E, Dalzotto M, Dalla Fini G (1998) Possibilities of conveying a cationic drug in carbomer hydrogels. Drug Dev Ind Pharm 24:337–343

    Article  CAS  Google Scholar 

  39. Jimenez-Kairuz AF, Allemandi DA, Manzo RH (2003) Equilibrium properties and mechanism of kinetic release of metoclopramide from carbomer hydrogels. Int J Pharm 250:129–136

    Article  CAS  Google Scholar 

  40. Blanco-Fuente H, Esteban-Fernández B, Blanco-Méndez J, Otero-Espinar FJ (2002) Use of β-cyclodextrins to prevent modifications of the properties of carbopol hydrogels due to carbopol–drug interactions. Chem Pharm Bull 50:40–46

    Article  CAS  Google Scholar 

  41. Suvakanta D, Padala NM, Lilakanta N, Prasanta C (2010) Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm 67:217–223

    Google Scholar 

  42. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA (1983) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35

    Article  CAS  Google Scholar 

  43. Liu C, Gan X, Chen X (2011) A novel pH-sensitive hydrogels for potential colon-specific drug delivery: characterization and in vitro release studies. Starch 63:503–511

    Article  CAS  Google Scholar 

  44. Shoaib MH, Tazeen J, Merchant Yousuf RI (2006) Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC. Pak J Pharm Sci 19:119–124

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilhan Kayaman-Apohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kayaman-Apohan, N., Akyürek, E. Synthesis and drug-release properties of biodegradable hydrogels having β-cyclodextrin. Polym. Bull. 70, 2151–2167 (2013). https://doi.org/10.1007/s00289-013-0915-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0915-2

Keywords

Navigation