Skip to main content
Log in

QSPR prediction of thermal decomposition property of non-vinyl polymers having α-amino acids moieties

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In the present work, a quantitative structure–property relationship (QSPR) treatment of temperature of five percent of decomposition (T 5) of a number of totally 30 optically active polymers was performed by means of a genetic algorithm-based partial least squares (GA–PLS) and artificial neural network (ANN). Suitable set of molecular descriptors were calculated by dragon package and the important descriptors were selected by GA–PLS methods. These descriptors were served as inputs to generate ANN. After optimization and training of the networks, they were used for the calculation of T 5 for the validation set. By comparing of the results obtained from PLS and ANN models, it can be seen that statistical parameters (Fisher ratio, correlation coefficient, and standard error) of the ANN model are better than PLS one, which indicates that nonlinear model can simulate the relationship between the structural descriptors and T 5 of the investigated macromolecules more accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gabbott P (2008) Principles and applications of thermal analysis. Blackwell Publishing Ltd., Oxford, pp 87–88

    Book  Google Scholar 

  2. Menczel JD, Prime BR (2009) Thermal analysis of polymers: fundamentals and applications. Wiley, New York, pp 241–314

    Book  Google Scholar 

  3. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Berlin, pp 279–448

    Google Scholar 

  4. Ahn C, Ohk CW, Kim JH, Zin WC (2009) Glass transition temperature of polymer nanocomposites: prediction from the continuous-multilayer model. J Polym Sci, Part B: Polym Phys 47:2281–2287

    Article  CAS  Google Scholar 

  5. Chen X, Sztandera L, Cartwright HM (2008) A neural network approach to prediction of glass transition temperature of polymers. Int J Intell Syst 23:22–32

    Article  Google Scholar 

  6. Bertinetto C, Duce C, Micheli A, Solaro R, Starita A, Tine MR (2007) Prediction of the glass transition temperature of (meth)acrylic polymers containing phenyl groups by recursive neural network. Polymer 48:7121–7129

    Article  CAS  Google Scholar 

  7. Funar-Timofei S, KuruncziL Iliescu S (2005) Structure–property study of some phosphorus containing polymers by computational methods. Polym Bull 54:443–449

    Article  CAS  Google Scholar 

  8. Schut J, Bolikal D, Khan IJ, Pesnell A, Rege A, Rojas R, Sheihet L, Murthy NS, Kohn J (2007) Glass transition temperature prediction of polymers through the mass-per-flexible-bond principle. Polymer 48:6115–6124

    Article  CAS  Google Scholar 

  9. Afantitis A, Melagraki G, Makridima K, Alexandridis A, Sarimveis H, Iglessi-Markopoulou O (2005) Prediction of high weight polymers glass transition temperature using RBF neural networks. J Mol Struct THEOCHEM 716:193–198

    Article  CAS  Google Scholar 

  10. Yu X, Xie Z, Yi B, Wang X, Liu F (2007) Prediction of the thermal decomposition property of polymers using quantum chemical descriptors. Eur Polym J 43:818–823

    Article  CAS  Google Scholar 

  11. Katrizky AR, Rachwal P, Law KW, Karelson M, Lobanov VS (1996) Prediction of polymer glass transition temperatures using a general quantitative structure–property relationship treatment. J Chem Inf Comput Sci 36:879–884

    Article  Google Scholar 

  12. Cao C, Lin Y (2003) Correlation between the glass transition temperatures and repeating unit structure for high molecular weight polymers. J Chem Inf Model 43:643–650

    Article  CAS  Google Scholar 

  13. Ajloo D, Sharifian A, Behniafar H (2008) Prediction of thermal decomposition temperature of polymers using QSPR methods. Bull Korean Chem Soc 29:2009–2016

    Article  CAS  Google Scholar 

  14. Cameilio P, Lazzeri V, Waegell B (1995) QSPR in polymers: a straightforward new approach to calculate the glass transition temperature. Polym Preprints: Am Chem Soc Div Polym Chem 36:661–662

    Google Scholar 

  15. Mallakpour S, Hatami M, Golmohammadi H (2010) Prediction of inherent viscosity for polymers containing natural amino acids from the theoretical derived molecular descriptors. Polymer 51:3568–3574

    Article  CAS  Google Scholar 

  16. Golmohammadi H, Fatemi MH (2005) Artificial neural network prediction of retention factors of some benzene derivatives and heterocyclic compounds in micellar electrokinetic chromatography. Electrophoresis 26:3438–3444

    Article  CAS  Google Scholar 

  17. Baher E, Fatemi MH, Konoz E, Golmohammadi H (2007) Prediction of retention factors in micellar electrokinetic chromatography from theoretically derived molecular descriptors. Microchim Acta 158:117–122

    Article  CAS  Google Scholar 

  18. Konoz E, Golmohammadi H (2008) Prediction of air-to-blood partition coefficients of volatile organic compounds using genetic algorithm and artificial neural network. Anal Chim Acta 619:157–164

    Article  CAS  Google Scholar 

  19. Golmohammadi H (2009) Prediction of octanol–water partition coefficients of organic compounds by multiple linear regression, partial least squares, and artificial neural network. J Comput Chem 30:2455–2465

    Article  CAS  Google Scholar 

  20. Golmohammadi H, Konoz E, Dashtbozorgi Z (2009) Prediction of gas-to-olive oil partition coefficients of ioganic compounds using an artificial neural network. Anal Sci 25:1137–1142

    Article  CAS  Google Scholar 

  21. Mallakpour S, Hajipour A, Khoee S (2002) Rapid synthesis of optically active poly(amide–imide)s by direct polycondensation of aromatic dicarboxylic acid with aromatic diamines. Eur Polym J 38:2011–2016

    Article  CAS  Google Scholar 

  22. Mallakpour SE, Moghaddam E (2006) Preparation of new poly(ester–imide)s from N,N′-(4,4′-hexafluoroisopropylidendiphthaloyl)-bis-l-isoleucine and aromatic diols with TsCl/Py/DMF as a condensing agent. Iran Polym J 15:547–554

    CAS  Google Scholar 

  23. Mallakpour SE, Hajipour A, Khoee S (2000) Microwave-assisted polycondensation of 4,4′-(hexafluoroisopropylidene)-N,N′-bis(phthaloyl-l-leucine) diacid chloride with aromatic diols. J Appl Polym Sci 77:3003–3009

    Article  CAS  Google Scholar 

  24. Mallakpour SE, Hajipour A, Khoee S (1999) Synthesis and characterization of novel optically active poly(amide–imide)s. Polym Int 48:1133–1140

    Article  CAS  Google Scholar 

  25. Mallakpour S, Kowsari E (2006) Thermally stable and optically active poly(amide–imide)s derived from 4,4′-(hexafluoroisopropylidene)-N,N′-bis-(phthaloyl-l-methionine) diacid chloride and various aromatic diamines: synthesis and characterization. Polym Bull 57:169–178

    Article  CAS  Google Scholar 

  26. Mallakpour S, Kowsari E (2006) Preparation and characterization of new thermally stable and optically active poly(ester–imide)s by direct polycondensation with thionyl chloride in pyridine. Polym Adv Technol 17:174–179

    Article  CAS  Google Scholar 

  27. Mallakpour S, Kowsari E (2005) Polycondensation reaction of N,N’-(4,4′-oxydiphthaloyl)-bis-l-isoleucine diacid chloride with aromatic diamines. Iran Polym J 14(9):799–806

    CAS  Google Scholar 

  28. Mallakpour S, Kowsari E (2006) Thionyl chloride/pyridine system as a condensing agent for the polyesterification reaction of N,N′-(4,4′-oxydiphthaloyl)-bis-l-leucine and aromatic diols. Iran Polym J 15(6):457–465

    CAS  Google Scholar 

  29. Mallakpour S, Habibi S (2003) Microwave-promoted synthesis of new optically active poly(ester–imide)s derived from N,N0-(pyromellitoyl)-bis-l-leucine diacid chloride and aromatic diols. Eur Polym J 39:1823–1829

    Article  CAS  Google Scholar 

  30. Mallakpour SE, Hajipour A, Zamanlou MR (2001) Synthesis of optically active poly(amide-imide)s derived from N,N’-(4,4′-arbonyldiphthaloyl)-bis-l-leucine diacid chloride and aromatic diamines by microwave radiation. J Polym Sci 39:177–186

    CAS  Google Scholar 

  31. Brandrup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. Wiley, New York

    Google Scholar 

  32. Yu XL, Wang XY, Gao JW, Li XB, Wang HL (2006) Prediction of glass transition temperatures for polystyrenes by a four descriptors QSPR model. Macromol Theory Simul 15:94–99

    Article  CAS  Google Scholar 

  33. Lili S, Liping Z, Yu Y, Yukun L, Zhiliang L (2007) QSPR study of polychlorinated diphenyl ethers by molecular electronegativity distance vector (MEDV-4). Chemosphere 66:1039–1051

    Article  Google Scholar 

  34. Yovani MP (2004) Total and local (atom and atom type) molecular quadratic indices: significance interpretation, comparison to other molecular descriptors, and QSPR/QSAR applications. Bioorg Med Chem 12:6351–6369

    Article  Google Scholar 

  35. Hyperchem (1995) re. 4. for Windows, Autodesk, Sansalito, CA

  36. Mopac for Windows (2009) Stewart computational chemistry

  37. Mauri A, Consonni V, Pavan M, Todeschini R (2006) DRAGON software: an easy approach to molecular descriptor calculations. MATCH Commun Math Comput Chem 56:237–248

    CAS  Google Scholar 

  38. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New York

    Google Scholar 

  39. Hoskuldsson A (1996) Prediction methods in science and technology. Vol. 1: basic theory. Thur Publishing, Denmark

  40. Leardi R, Boggia R, Terrile M (1992) Genetic algorithms as a strategy for feature selection. J Chemom 6:267–281

    Article  CAS  Google Scholar 

  41. Leardi R, Gonzalez AL (1998) Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemom Intell Lab Syst 41:195–207

    Article  CAS  Google Scholar 

  42. Geladi P, Kowalski BR (1986) Partial least squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  43. Lorber A, Wangen L, Kowalsky BR (1987) Theoretical foundation for the PLS algorithm. J Chemom 1:19–31

    Article  CAS  Google Scholar 

  44. Khayamian T, Ensafi AA, Hemmateenejad B (1999) Simultaneous spectrophotometric determinations of cobalt, nickel and copper using partial least squares based on singular value decomposition. Talanta 49:587–596

    Article  CAS  Google Scholar 

  45. Shamsipur M, Hemmateenejad B, Akhond M (2001) Quantitative structure–property relationship study of acidity constants of some 9,10-anthraquinone derivatives using multiple linear regression and partial least-squares procedures. Talanta 54:1113–1120

    Article  CAS  Google Scholar 

  46. Hoskuldsson A (2001) Variable and subset selection in PLS regression. Chemom Intell Lab Syst 55:23–38

    Article  CAS  Google Scholar 

  47. MATLAB 7.0, The Mathworks Inc., Natick, MA, USA, http://www.mathworks.com

  48. Zupan J, Gasteiger J (1999) Neural network in chemistry and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  49. Beal TM, Hagan HB, Demuth M (1996) Neural network design. PWS, Boston

    Google Scholar 

  50. Zupan J, Gasteiger J (1993) Neural networks for chemists: an introduction. VCH, Weinheim

    Google Scholar 

  51. Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graphics Modell 20:269–276

    Article  CAS  Google Scholar 

  52. Roy PP, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313

    Article  CAS  Google Scholar 

  53. Maldonado AG, Doucet JP, Petitjean M (2006) Molecular similarity and diversity in chemoinformatics: from theory to applications. Mol Divers 10:39–79

    Article  CAS  Google Scholar 

  54. Todeschini R, Lasagni M, Marengo E (1994) New molecular descriptors for 2D- and 3D-structures theory. J Chemom 8:263–273

    Article  CAS  Google Scholar 

  55. Todeschini R, Gramatica P (1998) New 3D molecular descriptors: the WHIM theory and QSAR applications. In: Kubinyi H, Folkers G, Martin YC (eds) e30 QSAR in drug design, vol 2. Kluwer/ESCOM, Dordrecht, pp 355–380

    Chapter  Google Scholar 

  56. Balaban AT (1993) Benzenoid catafusenes: perfect matchings, isomerization, automerization. Pure Appl Chem 65:1–9

    Article  CAS  Google Scholar 

  57. Balaban AT (1993) Lowering the intra and intermolecular degeneracy of topological invariants. Croat Chem Acta 66:447–458

    CAS  Google Scholar 

  58. Jalali-Heravi M, Fatemi MH (1998) Prediction of flame ionization detector response factors using an artificial neural network. J Chromatogr A 825:161–169

    Article  CAS  Google Scholar 

  59. Jalali-Heravi M, Fatemi MH (2000) Prediction of thermal conductivity detection response factors using an artificial neural network. J Chromatogr A 897:227–235

    Article  CAS  Google Scholar 

  60. Fatemi MH, Jalali-Heravi M, Knouze E (2003) Prediction of bioconcentration factor using genetic algorithm and artificial neural network. Anal Chim Acta 486:101–108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT), Isfahan, for partial financial support. Further financial support from National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Chemistry Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Hatami, M. & Golmohammadi, H. QSPR prediction of thermal decomposition property of non-vinyl polymers having α-amino acids moieties. Polym. Bull. 70, 715–732 (2013). https://doi.org/10.1007/s00289-013-0906-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-013-0906-3

Keywords

Navigation