Skip to main content

Advertisement

Log in

Polyamide derived from 4,4′-thiobis(methylene)dibenzoyl chloride and aliphatic diamine: interfacial synthesis and characterization

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

A series of processable semi-aromatic polyamides containing thioether and methylene units were synthesized through the reaction of 4,4-thiobis(methylene)dibenzoyl chloride and aliphatic diamine by the method of interfacial polycondensation. These polyamides had excellent thermal properties with glass transition temperatures (T g) of 104.3–130.6 °C, melting temperatures (T m) of 300.3–303.8 °C, and initial degradation temperatures (T d) of 405.2–410.3 °C. They had wider processing windows than traditional semi-aromatic polyamides (such as PA6T can not be processed by melting) and can be processed by melting method. They had better tensile strengths of 57.6–64.1 MPa, low-temperature mechanical properties, low water absorption of 0.19–0.27 %, low dielectric constants of 3.11–3.95 at 100 kHz, and better melt flowability properties of 232–60.7, 301.9–78.8, and 423.1–83.6 Pa s under a shear rate ranging from 20 to 1,170 s−1, respectively. In addition, these polyamides showed good corrosion resistance, they did not dissolve in solvents such as NMP, DMSO, hydrochloric acid (6 mol/l), and solution of NaOH (1 mol/l) and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. José MG, Félix C, García FS, de la Pena JL (2010) High-performance aromatic polyamides. Prog Polym Sci 35:623–638. doi:10.1016/j.progpolymsci.2009.09.002

    Article  Google Scholar 

  2. Ellis TS (1990) Aromatic polyamide blends: enthalpy relaxation and its correlation with phase phenomena. Macromolecules 23:1494–1503. doi:10.1021/ma00207a042

    Article  CAS  Google Scholar 

  3. Persyn O, Miri V, Lefebvre JM, Ferreiro V, Brink T, Stroeks A (2006) Mechanical behavior of films of miscible polyamide 6/polyamide 6I–6T blends. J Polym Sci Part B 44:1690–1701. doi:10.1002/polb.20825

    Article  CAS  Google Scholar 

  4. Endo M, Morishima Y, Yano S, Tadano K, Murata Y, Tsunashima K (2006) Miscibility in binary blends of aromatic and alicyclic polyamides. J Appl Polym Sci 101:3971–3978. doi:10.1002/app.22912

    Article  CAS  Google Scholar 

  5. Liu Y, Donovan JA (1995) Miscibility and crystallization semicrystalline nylon 6 and amorphous nylon 6IcoT blends. Polymer 36:4797–4803. doi:10.1016/0032-3861(95)99295-6

    Article  CAS  Google Scholar 

  6. Brisson J, Breault B (1991) Miscibility of polyamide blends. 1. Molecular modeling of poly(n-methyleneisophtha1amide)-poly(m-phenyleneisophthalamide) blends. Macromolecules 24:495–504. doi:10.1021/ma00002a024

    Article  CAS  Google Scholar 

  7. Shibayama M, Uenoyama K, Oura JI, Nomura S, Iwamoto T (1995) Miscibility and crystallinity control of nylon 6 and poly(m-xylene adipamide blends. Polymer 36:4811–4816. doi:10.1016/0032-3861(95)99297-8

    CAS  Google Scholar 

  8. Lozano AE, Abajo JD, Campa JGDL, Preston J (1995) Synthesis and properties of aromatic polyamides with oligobenzamide pendent groups. I. Poly-5-(4-benzoylamino-1-benzoylamino)isophthalamides. J Polym Sci Part B 33:1987–1994. doi:10.1002/pola.1995.080331205

    Article  CAS  Google Scholar 

  9. Liaw DJ, Hsu PN, Chen WH, Lin SL (2002) High glass transitions of new polyamides, polyimides, and poly(amide–imide)s containing a triphenylamine group: synthesis and characterization. Macromolecules 35:4669–4676. doi:10.1021/ma001523u

    Article  CAS  Google Scholar 

  10. Ballistreri A, Garozzo D, Giuffrida M, Maravigna P (1986) Thermal decomposition processes in aliphatic-aromatic polyamides investigated by mass spectrometry. Macromolecules 19:2693–2699. doi:10.1021/ma00165a005

    Article  CAS  Google Scholar 

  11. Yang HH (1989) Aromatic high-strength fibers. Wiley, New York

    Google Scholar 

  12. Spiliopoulos IK, Mikroyannidis JA, Tsivgoulis GM (1998) Rigid-rod polyamides and polyimides derived from 4,3″-diamino-2′, 6′-diphenyl- or di(4-biphenylyl)-p-terphenyl and 4-amino-4″-carboxy-2′,6′-diphenyl-p-terphenyl. Macromolecules 31:522–529. doi:10.1021/ma9709664

    Article  CAS  Google Scholar 

  13. Liaw DJ, Liaw BY, Tseng JM (1999) Synthesis and characterization of novel poly(amide-imide)s containing hexafluoroisopropylidene linkage. J Polym Sci Part A 37:2629–2635. doi:10.1002/(SICI)1099-0518(19990715)37:14<2629:AID-POLA37>3.0.CO;2-3

    Article  CAS  Google Scholar 

  14. Yang SH, Fu P, Liu MY, Wang YD, Zhang YC, Zhao QX (2010) Synthesis, characterization of polytridecamethylene 2,6-naphthalamide as semiaromatic polyamide containing naphthalene-ring. Express Polym Lett 4:442–449. doi:10.3144/expresspolymlett.2010.55

    Article  CAS  Google Scholar 

  15. Uddin AJ, Ohkoshi Y, Gotoh Y, Nagura M, Hara T (2003) Influence of moisture on the viscoelastic relaxations in long aliphatic chain contained semiaromatic polyamide, (PA9-T) fiber. J Polym Sci Part B 41:2878–2891. doi:10.1002/polb.10602

    Article  CAS  Google Scholar 

  16. Uddin AJ, Ohkoshi Y, Gotoh Y, Nagura M, Hara T (2004) Melt spinning and laser-heated drawing of a new semiaromatic polyamide, PA9-T fiber. J Polym Sci Part B 42:433–444. doi:10.1002/polb.10710

    Article  CAS  Google Scholar 

  17. Uddin AJ, Gotoh Y, Ohkoshi Y, Nagura M, Endo R, Hara T (2005) Hydration in a new semiaromatic polyamide observed by humidity-controlled dynamic viscoelastometry and X-ray diffraction. J Polym Sci Part B 43:1640–1648. doi:10.1002/polb.20446

    Article  CAS  Google Scholar 

  18. Uddin AJ, Ohkoshi Y, Gotoh Y, Nagura M, Endo R, Hara T (2006) Effects of take-up speed of melt spinning on the structure and mechanical properties of maximally laser drawn PA9-T fibers. Int Polym Process 21: 263–271. http://www.polymer-process.com/IPP0090

    Google Scholar 

  19. Novitsky TF, Lange CA, Mathias LJ, Osborn S, Ayotte R, Manning S (2010) Eutectic melting behavior of polyamide 10, T-co-6, T and 12, T-co-6, T copolyterephthalamides. Polymer 51:2417–2425. doi:10.1016/j.polymer.2010.03.045

    Article  CAS  Google Scholar 

  20. Liu MY, Li KF, Yang SH, Fu P, Wang YD, Zhao QX (2011) Synthesis and thermal decomposition of poly(dodecamethylene terephthalamide). J Appl Polym Sci 122:3369–3376. doi:10.1002/app.34416

    Article  CAS  Google Scholar 

  21. Yang SH, Fu P, Liu MY, Wang YD, Li ZP, Zhao QX (2010) Synthesis, characterization and thermal decomposition of poly(decamethylene 2,6-naphthalamide). Express Polym Lett 4:346–354. doi:10.3144/expresspolymlett.2010.44

    Article  CAS  Google Scholar 

  22. Wang WZ, Zhang YH (2009) Environment-friendly synthesis of long chain semiaromatic polyamides. Express Polym Lett 3:470–476. doi:10.3144/expresspolymlett.2009.58

    Article  CAS  Google Scholar 

  23. Li PH, Wang CY, Li G, Jiang JM (2009) Highly organosoluble and transparent polyamides containing cyclohexane and trifluoromethyl moieties: synthesis and characterization. Express Polym Lett 3:703–712. doi:10.3144/expresspolymlett.2009.88

    Article  CAS  Google Scholar 

  24. Liaw DJ, Chang FC, Leung MK, Chou MY, Muellen K (2005) High thermal stability and rigid rod of novel organosoluble polyimides and polyamides based on bulky and noncoplanar naphthalene–biphenyldiamine. Macromolecules 38:4024–4029. doi:10.1021/ma048559x

    Article  CAS  Google Scholar 

  25. Yang J (2006) PAS resin and its application. Chemical Industry Press, Beijing

    Google Scholar 

  26. Xu SX, Yang J, Long SR, Chen YR, Li GX (2005) Synthesis and characterization of poly(p-phenylene sulfide sulfone/ketone) copolymer. Polym Bull 54:251–261. doi:10.1007/s00289-005-0392-3

    Article  CAS  Google Scholar 

  27. Liu Y, Bhatnagar A, Ji Q, Riffile JS, McGrath JE, Geibei JF, Kashiwagi T (2000) Influence of polymerization conditions on the molecular structure stability and physical behavior of poly(phenylene sulfide sulfone) homopolymers. Polymer 41:5137–5146. doi:10.1016/S0032-3861(99)00571-6

    Article  CAS  Google Scholar 

  28. Wang HD, Yang J, Long SR, Wang XJ, Yang Z, Li GX (2004) Studies on the thermal degradation of poly(phenylene sulfide sulfone). Polym Degrad Stab 83:229–235. doi:10.1016/S0141-3910(03)00266-0

    Article  CAS  Google Scholar 

  29. Yang J, Wang HD, Xu SX, Li GX, Huang YJ (2005) Study on polymerization conditions and structure of poly(phenylene sulfide sulfone). J Polym Res 12:317–323. doi:10.1007/s10965-004-6386-2

    Article  Google Scholar 

  30. Novitsky T, Lange C, Jarrett W, Mathias L, Osborn S, Ayotte R, Manning S (2010) Effect of stoichiometric imbalances on the melt condensation polymerization of poly(dodecamethylene terephthalamide) studied by intrinsic viscosity and 13C-NMR. J Appl Polym Sci 116:3388–3395. doi:10.1002/app.31863

    Google Scholar 

  31. Li WH, Yan DY (2003) Synthesis and characterization of nylons based on hexadecane diacid. J Appl Polym Sci 88:2462–2467. doi:10.1002/app.12048

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by research grants from the Youth Fund of Sichuan University (Grant No.: 2012SCU11009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G., Zhang, Y., Li, Ds. et al. Polyamide derived from 4,4′-thiobis(methylene)dibenzoyl chloride and aliphatic diamine: interfacial synthesis and characterization. Polym. Bull. 70, 789–807 (2013). https://doi.org/10.1007/s00289-012-0829-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0829-4

Keywords

Navigation