Skip to main content
Log in

Iron-mediated AGET ATRP of MMA using acidic/basic salts as reducing agents

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, iron-mediated activator generated by electron transfer for atom transfer radical polymerization of methyl methacrylate was carried out using two different types of salts, acidic hydroxylamine hydrochloride and basic sodium bisulfite as the reducing agents, ethyl 2-bromoisobutyrate as an initiator, FeCl3·6H2O as a catalyst and triphenylphosphine (PPh3) as a ligand. The polymerization could be carried out in the presence of a limited amount of oxygen (air) and showed highly efficient catalyst activity. The living features were confirmed by the polymerization kinetics, analysis of chain end, and chain-extension experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang JS, Matyjaszewski K (1995) Controlled/living radical polymerization. Atom transfer radical polymerization in the presence of transition–mental complexes. J Am Chem Soc 117:5614–5615

    Article  CAS  Google Scholar 

  2. Kato M, Kamigaito M, Sawamoto M, Higashimura T (1995) Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28:1721–1723

    Article  CAS  Google Scholar 

  3. Machado M, Faucher S, Zhu SP (2010) Hybrid atom transfer radical polymerization system for balanced polymerization rate and polymer molecular weight control. J Polym Sci A 48:2294–2301

    Article  CAS  Google Scholar 

  4. Munoz-Bonilla A, Haddleton DM, Cerrada ML, Fernandez-Garcia M (2008) Synthesis of poly(di[methylamine]ethyl methacrylate)-b-poly(cyclohexyl methacrylate)-b-poly(di[methylamine]ethyl methacrylate) amphiphilic triblock copolymers by ATRP: condensed-phase and solution properties. J Polym Sci A 46:85–92

    Article  CAS  Google Scholar 

  5. Shi GY, Pan CY (2009) An efficient synthetic route to well-defined theta-shaped copolymers. J Polym Sci A 47:2620–2630

    Article  CAS  Google Scholar 

  6. Gromada J, Matyjaszewski K (2001) Simultaneous reverse and normal initiation in atom transfer radical polymerization. Macromolecules 34:7664–7671

    Article  CAS  Google Scholar 

  7. Li M, Min K, Matyjaszewski K (2004) ATRP in waterborne miniemulsion via a simultaneous reverse and normal initiation process. Macromolecules 37:2106–2112

    Article  CAS  Google Scholar 

  8. Li M, Jahed NM, Min K, Matyjaszewski K (2004) Preparation of linear and star-shaped block copolymers by ATRP using simultaneous reverse and normal initiation process in bulk and miniemulsion. Macromolecules 37:2434–2441

    Article  CAS  Google Scholar 

  9. Mueller L, Jakubowski W, Tang W, Matyjaszewski K (2007) Successful chain extension of polyacrylate and polystyrene macroinitiators with methacrylates in an ARGET and ICAR ATRP. Macromolecules 40:6464–6472

    Article  CAS  Google Scholar 

  10. Jakubowski W, Matyjaszewski K (2005) Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 38:4139–4146

    Article  CAS  Google Scholar 

  11. Min K, Gao HF, Matyjaszewski K (2005) Preparation of homopolymers and block copolymers in miniemulsion by ATRP using activators generated by electron transfer (AGET). J Am Chem Soc 127:3825–3830

    Article  CAS  Google Scholar 

  12. Oh JK, Dong HC, Zhang R, Matyjaszewski K, Schlaad H (2007) Preparation of nanoparticles of double-hydrophilic PEO-PHEMA block copolymers by AGET ATRP in inverse miniemulsion. J Polym Sci A 45:4764–4772

    Article  CAS  Google Scholar 

  13. Kwiatkowski P, Jurczak J, Pietrasik J, Jakubowski W, Mueller L, Matyjaszewski K (2008) High molecular weight polymethacrylates by AGET ATRP under high pressure. Macromolecules 41:1067–1069

    Article  CAS  Google Scholar 

  14. Li WW, Min K, Matyjaszewski K, Stoffelbach F, Charleux B (2008) PEO-based block copolymers and homopolymers as reactive surfactants for AGET ATRP of butyl acrylate in miniemulsion. Macromolecules 41:6387–6392

    Article  CAS  Google Scholar 

  15. Kitayama Y, Kagawa Y, Minami H, Okubo M (2010) Preparation of micrometer-sized, onionlike multilayered block copolymer particles by two-step AGET ATRP in aqueous dispersed systems: effect of the second-step polymerization temperature. Langmuir 26:7029–7034

    Article  CAS  Google Scholar 

  16. Dong HC, Matyjaszewski K (2010) Thermally responsive P(M(EO)2MA-co-OEOMA) copolymers via AGET ATRP in miniemulsion. Macromolecules 43:4623–4628

    Article  CAS  Google Scholar 

  17. Zhang LF, Cheng ZP, Shi SP, Li Q, Zhu XL (2008) AGET ATRP of methyl methacrylate catalyzed by FeCl3/iminodiacetic acid in the presence of air. Polymer 49:3054–3059

    Article  CAS  Google Scholar 

  18. Jakubowski W, Min K, Matyjaszewski K (2006) Activators regenerated by electron transfer for atom transfer radical polymerization of styrene. Macromolecules 39:39–45

    Article  CAS  Google Scholar 

  19. Chen H, Yang LX, Liang Y, Hao ZH, Lu ZX (2009) ARGET ATRP of acrylonitrile catalyzed by FeCl3/isophthalic acid in the presence of air. J Polym Sci A 47:3202–3207

    Article  CAS  Google Scholar 

  20. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: Features, developments, and perspectives. Prog Polym Sci 32:93–146

    Article  CAS  Google Scholar 

  21. Nicolay R, Kwak Y, Matyjaszewski K (2010) A Green route to well-defined high-molecular-weight (co)polymers using ARGET ATRP with alkyl pseudohalides and copper catalysis. Angew Chem Int Ed 122:551–554

    Article  Google Scholar 

  22. Zhang LF, Cheng ZP, Tang F, Li Q, Zhu XL (2008) Iron(III)-mediated ATRP of methyl methacrylate using activators generated by electron transfer. Macromol Chem Phys 209:1705–1713

    Article  CAS  Google Scholar 

  23. He WJ, Zhang LF, Bai LJ, Zhang ZB, Zhu J, Cheng ZP, Zhu XL (2011) Iron-mediated AGET ATRP of methyl methacrylate in the presence of catalytic amounts of base. Macromol Chem Phys 212:1474–1480

    Article  CAS  Google Scholar 

  24. Oh JK, Matyjaszewski K (2006) Synthesis of poly(2-hydroxyethyl methacrylate) in protic media through atom transfer radical polymerization using activators generated by electron transfer. J Polym Sci A 44:3787–3796

    Article  CAS  Google Scholar 

  25. Oh JK, Min K, Matyjaszewski K (2006) Preparation of poly(oligo(ethylene glycol) monomethyl ether methacrylate) by homogeneous aqueous AGET ATRP. Macromolecules 39:3161–3167

    Article  CAS  Google Scholar 

  26. Luo R, Sen A (2008) Electron-transfer-induced iron-based atom transfer radical polymerization of styrene derivatives and copolymerization of styrene and methyl methacrylate. Macromolecules 41:4514–4518

    Article  CAS  Google Scholar 

  27. Tang H, Radosz M, Shen Y (2006) CuBr2/N,N,N′,N′-tetra[(2-pyridal)methyl] ethylenediamine/tertiary amine as a highly active and versatile catalyst for atom-transfer radical polymerization via activator generated by electron transfer. Macromol Rapid Commun 27:1127–1131

    Article  CAS  Google Scholar 

  28. Yamamura Y, Matyjaszewski K (2007) Methylaluminoxane as a reducing agent for activators generated by electron transfer ATRP. J Macromol Sci A 44:1035–1039

    CAS  Google Scholar 

  29. Qin J, Cheng ZP, Zhang LF, Zhang ZB, Zhu J, Zhu XL (2011) A highly efficient iron-mediated AGET ATRP of methyl methacrylate using Fe(0) powder as the reducing agent. Macromol Chem Phys 212:999–1006

    Article  CAS  Google Scholar 

  30. Gnanou Y, Hizal G (2004) Effect of phenol and derivatives on atom transfer radical polymerization in the presence of air. J Polym Sci A 42:351–359

    Article  CAS  Google Scholar 

  31. Tao MX, Zhang LF, Jiang HJ, Zhang ZB, Zhu J, Cheng ZP, Zhu XL (2011) Iron(III)-mediated AGET ATRP of methyl methacrylate using vitamin C sodium salt as a reducing agent. Macromol Chem Phys 212:1481–1488

    Article  CAS  Google Scholar 

  32. Ando T, Kamigaito M, Sawamoto M (1997) Iron(II) chloride complex for living radical polymerization of methyl methacrylate. Macromolecules 30:4507–4510

    Article  CAS  Google Scholar 

  33. Ouchi M, Terashima T, Sawamoto M (2009) Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev 109:4963–5050

    Article  CAS  Google Scholar 

  34. Matyjaszewski K, Wei M, Xia J, McDermott NE (1997) Controlled/“living” radical polymerization of styrene and methyl methacrylate catalyzed by iron complexes. Macromolecules 30:8161–8164

    Article  CAS  Google Scholar 

  35. Ishio M, Terashima T, Ouchi M, Sawamoto M (2010) Carbonyl–phosphine heteroligation for pentamethylcyclopentadienyl (Cp*)–iron complexes: highly active and versatile catalysts for living radical polymerization. Macromolecules 43:920–926

    Article  CAS  Google Scholar 

  36. Xue ZG, He D, Noh SK, Lyoo WS (2009) Iron(III)-mediated atom transfer radical polymerization in the absence of any additives. Macromolecules 42:2949–2957

    Article  CAS  Google Scholar 

  37. Ishio M, Katsube M, Ouchi M, Sawamoto M, Inoue Y (2009) Active, versatile, and removable iron catalysts with phosphazenium salts for living radical polymerization of methacrylates. Macromolecules 42:188–193

    Article  CAS  Google Scholar 

  38. Ishio M, Terashima T, Ouchi M, Sawamoto M (2011) Dicarbonyl pentaphenylcyclopentadienyl iron complex for living radical polymerization: smooth generation of real active catalysts collaborating with phosphine ligand. J Polym Sci A 49:537–544

    Article  CAS  Google Scholar 

  39. Bai LJ, Zhang LF, Zhang ZB, Zhou NC, Tu YF, Cheng ZP, Zhu XL (2010) Iron-mediated AGET ATRP of styrene in the presence of catalytic amounts of base. Macromolecules 43:9283–9290

    Article  CAS  Google Scholar 

  40. Bai LJ, Zhang LF, Zhang ZB, Zhu J, Zhou NC, Cheng ZP, Zhu XL (2011) Alumina additives for fast iron-mediated AGET ATRP of MMA using onium salt as ligand. J Polym Sci A 49:3970–3979

    Article  CAS  Google Scholar 

  41. Bai LJ, Zhang LF, Zhang ZB, Zhu J, Zhou NC, Cheng ZP, Zhu XL (2011) Rate-enhanced ATRP in the presence of catalytic amounts of base: an example of iron-mediated AGET ATRP of MMA. J Polym Sci A 49:3980–3987

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (Nos. 20974071 and 21174096), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20103201110005), the Qing Lan Project, the Program of Innovative Research Team of Soochow University, the Program of National-Level Undergraduates’ Innovative Experiment of Soochow University (No. 111028514) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenping Cheng.

Additional information

This article was published in Sciencepaper Online (http://www.paper.edu.cn/index.php/default/releasepaper/content/201112-221).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Bai, L., Chen, W. et al. Iron-mediated AGET ATRP of MMA using acidic/basic salts as reducing agents. Polym. Bull. 70, 631–642 (2013). https://doi.org/10.1007/s00289-012-0827-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-012-0827-6

Keywords

Navigation